REDUCTION OF COD IN NAM SON LANDFILL LEACHATE BY ELECTRO-FENTON AS SECONDARY TREATMENT AFTER ELECTROCOAGULATION PRETREATMENT

2019 ◽  
Vol 57 (6) ◽  
pp. 724
Author(s):  
Son Thanh Le ◽  
Khai Cao LE

Landfill leachate is a high-strength wastewater that is most difficult to deal with because the fluctuating of composition and quality as well as high concentration of specific pollutants (PAH, PCBs, heavy metals) and very high ammonia nitrogen and COD concentrations. So, after a pre-treatment as electrocoagulation, over 73% of COD has been treated from Nam Son landfill leachate, however the output value of COD still exceeds the QCVN 40:2011/BTNMT, column B. So, an electro-fenton process was employed to secondarily treat Nam Son landfill leachate, after an electrocoagulation pre-treatment.  This electro-fenton system used a Pt gauze anode and a commercial carbon felt cathode to electrogenerate in situ hydrogen peroxide and regenerate ferrous ion as catalyst. In this study, the effects of various operating conditions such as initial pH, concentration of Fe2+ catalyst, current applied on reduction of COD in Nam Son landfill leachate were examined. At the optimal condition: applied current of 1A, pH 3, Fe2+ concentration of 0.1m M, Na2SO4 concentration of 0.05 M, 77.2% COD reduction can be reached within 60 min and the output value of COD is 130.9 mg.L-1, according to QCVN 40:2011/BTNMT, column B. The research results indicated that electro-fenton process can promise as a potential method in practice for secondary treatment of landfill leachate.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1026
Author(s):  
Javier Tejera ◽  
Antonio Gascó ◽  
Daphne Hermosilla ◽  
Víctor Alonso-Gomez ◽  
Carlos Negro ◽  
...  

The objective of this trial was to assess the application of UVA-LED technology as an alternative source of irradiation for photo-Fenton processes, aiming to reduce treatment costs and provide a feasible treatment for landfill leachate. An optimized combination of coagulation with ferric chloride followed by photo-Fenton treatment of landfill leachate was optimized. Three different radiation sources were tested, namely, two conventional high-pressure mercury-vapor immersion lamps (100 W and 450 W) and a custom-designed 8 W 365 nm UVA-LED lamp. The proposed treatment combination resulted in very efficient degradation of landfill leachate (COD removal = 90%). The coagulation pre-treatment removed about 70% of the COD and provided the necessary amount of iron for the subsequent photo-Fenton treatment, and it further favored this process by acidifying the solution to an optimum initial pH of 2.8. The 90% removal of color improved the penetration of radiation into the medium and by extension improved treatment efficiency. The faster the Fenton reactions were, as determined by the stoichiometric optimum set-up reaction condition of [H2O2]0/COD0 = 2.125, the better were the treatment results in terms of COD removal and biodegradability enhancement because the chances to scavenge oxidant agents were limited. The 100 W lamp was the least efficient one in terms of final effluent quality and operational cost figures. UVA-LED technology, assessed as the application of an 8 W 365 nm lamp, provided competitive results in terms of COD removal, biodegradability enhancement, and operational costs (35–55%) when compared to the performance of the 450 W conventional lamp.


2015 ◽  
Vol 26 (3) ◽  
pp. 49-53 ◽  
Author(s):  
Anna Kwarciak-Kozłowska ◽  
Aleksandra Krzywicka

Abstract The goal of this article was to compare the efficiency of Fenton and photo-Fenton reaction used for stabilised landfill leachate treatment. The mass ratio of COD:H2O2 was fixed to 1:2 for every stages. The dose of reagents (ferrous sulphate/hydrogen peroxide) was different and ranged from 0.1 to 0.5. To determine the efficiency of treatment, the BOD (biochemical oxygen demand COD (chemical oxygen demand), TOC (total organic carbon) , ammonia nitrogen and BOD/COD ratio was measured. The experiment was carried out under the following conditions: temperature was 25ºC, the initial pH was adjusted to 3.0. Every processes were lasting 60 minutes. The most appropriate dose of reagents was 0.25 (Fe2+/H2O2). It was found that the application of UV contributed to increase of COD, TOC and ammonia removal efficiencies by an average of 14%.


Author(s):  
Thanh Son Le ◽  
Khải Cao Lê ◽  
Hà Thị Nguyễn ◽  
Linh Tuấn Đoàn ◽  
Anh Thị Đoàn

In this paper, an electrocoagulation reactor was set up to investigate the ammonium removal in Nam Son landfill leachate. The research focused on studying several factors that affect to the ammonium removal namely current intensity, operating time, initial pH and electrode materials. Mono-polar electrocoagulation reactor was conducted in a batch system with iron electrodes and 1.8 L leachate. The research indicated that current intensity and operating time are directly proportional with NH4+ treatment performance. When applied current increased from 1 to 4A, the NH4+ removal percentage went up from 14.03 to 24.99% after a 1 hour treatment. The effect of initial pH in range of 5 to 10 has showed that the best NH4+ treatment efficiency in neutral and mild alkaline conditions. It is noticeable that iron electrodes had higher NH4+ removal than aluminum one during nearly the first 40 min, however this trend has been reversed later with the advantage belonging to aluminum anode. The optimum operating conditions found are aluminum electrodes, applied current of 3A, electrolysis time of 60 min, raw pH of 8, resulting in NH4+ treatment performance of approximately 24%. As a result, the electrocoagulation method is not really effective in NH4+ removal and might be applied as a pre-treatment.


2021 ◽  
Vol 15 (1) ◽  
pp. 10-17
Author(s):  
Mazen N. Al-Amaireh

Objective: The fouling inhibition in seawater desalination and scale control using crystallization with calcite seeds is evaluated experimentally in this study. Methods: The growth kinetic parameters are determined experimentally, correlated and discussed at different operating conditions. Supersaturation levels represent driving force behind the growth of crystals, which is influenced directly by seawater pH values and temperatures. Results: Results indicate that the initial pH value of seawater must be controlled to be in the range (8-9) and calcite seeds will not have the potential to start the growth process in seawater at the normal pH (7.36). The growth kinetic parameters are determined from the measured desupersaturation curves. Conclusion: It is found that the growth process of calcite is controlled by the surface integration step. The growth rate of calcite increases with increasing temperature and seeding ratio (up to 1 g/L), while it decreases with increasing the salinity of seawater.


2018 ◽  
Vol 7 (3.8) ◽  
pp. 101
Author(s):  
Minimol Pieus T ◽  
Soloman P.A

The landfill is the most widely utilized approach for solid waste management over the world. The fluid side-effect of the procedure, leachate, is a genuine danger to the earth. The ordinary biological treatment of matured landfill leachate is restricted by the presence of toxic contaminants and recalcitrant organics. A novel approach for management of landfill leachate by Electro Fenton process is researched here for the technical feasibility. The experimental outcome demonstrated that there was extensive reduction in COD-78.2%, Ammonia nitrogen-42.0%, Chloride-63.5%, Sulfate-60.0%, Sulfide-57.3%, and Phosphate-62.4% at the optimum working state of pH-2.85, Current density-140.5 A/m2, H2O2 dosage- 53% of theoretical value, Reaction time-44min. The biodegradability index was enhanced from 0.21 to 0.43 because of the treatment. The examination not just uncovers the likelihood of degradation of contaminants by giving a mild electrochemical treatment additionally extends the possibility of utilizing the approach as a compelling pretreatment for its biological treatment.  


2013 ◽  
Vol 9 (1) ◽  
pp. 51-56

Biological treatment (aerobic and anaerobic) of industrial landfill leachate is limited by the presence of toxic contaminants (e.g., heavy metals) and recalcitrant (biopersistent) organics (e.g., polyphenols, pharmaceuticals, cosmetics, etc.,), hindering viable conditions for biomass proliferation in biological reactors, with difficulties in meeting concentration limits imposed by applied regulations. Fenton’s oxidation by the use of Fe2+-H2O2-H+ mixture may be used as a pre-treatment of industrial landfill leachate for preliminary abatement of the organic load and to improve biodegradability (BOD/COD>0.4) to favour biological oxidation in conventional wastewater treatment plants. Leachate from Grottaglie (S.E. Italy) non-hazardous landfill (pH 8.6; COD=11.000 mg l-1; BOD5=2.400 mg l-1; NH4-N=2.900 mg l-1; conductivity=60.000 μS cm-1) was laboratory tested in different operative conditions, i.e., initial pH, Fe2+/H2O2 ratio, concentrations and reaction time. The oxidation reaction was monitored by equilibrium pH and residual COD and BOD5 concentrations. Best operative conditions were obtained at pH 3, Fe2+=700 mg l-1, H2O2=9,900 mg l-1 (H2O2/Fe2+ratio~13w/w), reaction time=2h. Following the oxidation reaction, solution pH was neutralized by the addition of Ca(OH)2 or NaOH (120 meq l-1) for further abatement of target parameters by precipitation/sorption. Preliminary technical/economical evaluation of possible process schemes is also given in the paper.


Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 2059
Author(s):  
Arif Reza ◽  
Lide Chen

Waste streams with high ammonia nitrogen (NH3-N) concentrations are very commonly produced due to human intervention and often end up in waterbodies with effluent discharge. The removal of NH3-N from wastewater is therefore of utmost importance to alleviate water quality issues including eutrophication and fouling. In the present study, vacuum thermal stripping of NH3-N from high strength synthetic wastewater was conducted using a rotary evaporator and the process was optimized and modeled using response surface methodology (RSM) and RSM–artificial neural network (ANN) approaches. RSM was first employed to evaluate the process performance using three independent variables, namely pH, temperature (°C) and stripping time (min), and the optimal conditions for NH3-N removal (response) were determined. Later, the obtained data from the designed experiments of RSM were used to train the ANN for predicting the responses. NH3-N removal was found to be 97.84 ± 1.86% under the optimal conditions (pH: 9.6, temperature: 65.5 °C, and stripping time: 59.6 min) and was in good agreement with the values predicted by RSM and RSM–ANN models. A statistical comparison between the models revealed the better predictability of RSM–ANN than that of the RSM. To the best of our knowledge, this is the first attempt comparing the RSM and RSM–ANN in vacuum thermal stripping of NH3-N from wastewater. The findings of this study can therefore be useful in designing and carrying out the vacuum thermal stripping process for efficient removal of NH3-N from wastewater under different operating conditions.


2016 ◽  
Vol 10 (5) ◽  
pp. 87 ◽  
Author(s):  
Jun Wang ◽  
Hong Cheng Tan ◽  
Yong Liang Zhang ◽  
Yong Zhang Pan

<p>In this study, a small pulsed current electrocoagulation device was used to treat high concentration dyeing wastewater from a specific dyeing mill, and the effects of the electrode materials, reaction time, voltage, pH value, and aeration on the results of the treatment were examined. The results showed that under the following operational conditions: electrode materials were iron electrodes, time period was 15 min, voltage was 120 V, and initial pH was approximately 6, the removal rates of the COD, ammonia nitrogen, and color were 79.45%, 23.89%, and 87.50%, respectively. On this basis, a pulsed current electrocoagulation device, with a handling capacity of 0.5 m<sup>3</sup>/h, was used to conduct a pilot plant test for a period of one month. The results showed that the effluent quality (COD 1217.4 mg/L and NH<sub>4</sub><sup>+</sup>-N 358.2 mg/L on average) of the high-concentration dyeing wastewater, whose COD and NH<sub>4</sub><sup>+</sup>-N concentrations were 5328 mg/L, 595 mg/L, respectively after the treatment of a pulsed current electrocoagulation reactor, was superior to the effluent quality (COD 1400 mg/L and NH<sub>4</sub><sup>+</sup>-N 450 mg/L) of the mill’s actual pre-treatment system (flocculation-anaerobic treatment-acidification), and fully reached the influent requirements of the subsequent aerobic treatment. The results of this study showed that pulsed current electrocoagulation reactors may be effectively used for the pre-treatment of high concentration dyeing wastewater due to the observed advantages, such as good treatment effects, small investment, and economical space occupation.</p>


Sign in / Sign up

Export Citation Format

Share Document