scholarly journals International overview on waste to biofuel options with a focsu on waste potentials in Germany and funding incentives in the EC

2013 ◽  
Vol 14 (2) ◽  
pp. 183-191

Biofuels represent a possibility to reduce greenhouse gas (GHG) emissions within the transport sector. In this context the sustainability of biofuels, especially so called 1st generation biofuels led to controversial discussions in the past. Biofuels from waste and residues represent a well suited but quantitative limited alternative due to their sustainability. At an international level, different approaches for converting waste and residues into biofuels can be found. Developing countries in general use classic transesterification of waste fats to produce biodiesel. Technically advanced options such as pyrolysis, gasification, Fischer-Tropsch-Diesel, anaerobic fermentation and distillation, as well as biogas production coupled with biomethane upgrading, are mostly found in industrialized countries. Within this study, different waste to biofuel options are reviewed ranging from small scale to industrial scale and take into account used raw materials, technological application and (potential) GHG-reduction. Further the potential of several wastes and residues for gasification processes and synthesis of biofuels in Germany is described. Biofuel from waste offers promising funding incentives because of the “double counting” according to 2009/28/EC and the switch in mandatory blending from an amount based quota to a GHG-based blending quota in 2015.

2018 ◽  
Vol 38 ◽  
pp. 02006
Author(s):  
Yu-Ming Sun ◽  
Xiao-Mei Huang ◽  
Yin-Hu Kang

In China, livestock manure emission has resulted in severe pollution to the environment and it is an efficient spreading agent of diseases. For this reason, the biogas has gotten a rapid development in the past few decades. As a kind of renewable and clean energy, many studies have indicated the prospect of biogas to replace fossil fuels in the future. However, the methane industrial production process is unstable due to various factors. Therefore, it is necessary to enhance the biogas fermentation efficiency. In this paper, the influences of the raw materials and the total solids (TS) concentration on biogas production characteristics are studied, where the utilization of raw materials can be reflected by the biogas production rate in the results. The results showed the anaerobic fermentation cycle is prolonged and biogas yield increases, but the utilization decreases with TS increases.


2021 ◽  
Vol 286 ◽  
pp. 02010
Author(s):  
Penka Zlateva ◽  
Angel Terziev ◽  
Krastin Yordanov

The focus of the present study is a small biogas power plant for anaerobic fermentation of several types of animal waste raw materials used for biogas production. The impact of some of the characteristics of substances such as composition, temperature, humidity, and pH of the mixture in the bioreactor has been considered. The above is vital for optimizing the fermentation process, and also to improve the biogas production process. The plant is located in Northeastern Bulgaria and the raw liquid manure is supplied by several neighboring small farms. The annual quantities of raw waste are as follows: cow manure - 1252 t / a; chicken manure - 427 t / a and pig manure - 639 t / a. The manure is collected in a preliminary tank and then pumped to the bioreactor. The fermenter itself is a hermetically sealed and thermally insulated tank where constant temperature is maintained. It is equipped with a stirring system, which helps the mixing and homogenization of the substrate. The tests were performed during three charges of the installation. The fermentation takes approximately 23 up to 25 days. The experiments were performed during the summer and autumn seasons when the ambient air temperature varies from 28 to 45 °C. The biogas can be used as an energy carried as the obtained organic fertilizer is suitable for agriculture purposes.


1989 ◽  
Vol 119 ◽  
pp. 420-447 ◽  
Author(s):  
Y. Y. Kueh

Any attempt to evaluate China's achievements in industrialization during the past four decades must confront three crucial issues. They are: first, to what extent industrial success was gained at the expense of slower agricultural growth as a result of the Soviet-style, forced industrialization strategy. Secondly, whether in view of the perceived need to narrow the gap between the under-developed interior and the more advanced coastal areas, Chinese leaders have succeeded in correcting regional imbalances in industrial production. Thirdly, whether advances in the modern industrial sector have benefited traditional, small-scale industries. This last question is an important one in the light of the experience of other industrialized countries, highlighting the “spill-over” effects of technical change from modern to traditional sectors.


2011 ◽  
Vol 57 (No. 4) ◽  
pp. 137-143 ◽  
Author(s):  
M. Herout ◽  
J. Malaťák ◽  
L. Kučera ◽  
T. Dlabaja

The aim of the work is to determine and analyse concentrations of individual biogas components according to the used raw materials based on plant biomass. The measurement is focused on biogas production depending on input raw materials like maize silage, grass haylage and rye grain. The total amount of plant biomass entering the fermenter during the measurement varies at around 40% w/w, the rest is liquid beef manure. The measured values are statistically evaluated and optimised for the subsequent effective operation of the biogas plant. A biogas plant operating on the principle of wet anaerobic fermentation process is used for the measurement. The biogas production takes place during the wet fermentation process in the mesophile operation at an average temperature of 40°C. The technology of the biogas plant is based on the principle of using two fermenters. It follows from the measured results that maize silage with liquid beef manure in the ratio of 40:60 can produce biogas with a high content of methane; this performance is not stable. At this concentration of input raw material, the formation of undesirable high concentrations of hydrogen sulphide occurs as well. It is shown from the results that the process of biogas production is stabilised by the addition of other components of plant biomass like grass haylage and rye grain and a limitation of the formation of hydrogen sulphide occurs. It follows from the results that the maize silage should form about 80% w/w from the total amount of the plant biomass used.


2016 ◽  
Vol 29 (2) ◽  
pp. 115 ◽  
Author(s):  
Zakaria Tazi Hnyine ◽  
Saut Sagala ◽  
Wahyu Lubis ◽  
Dodon Yamin

Selo, a small agricultural-based village in Boyolali, Central-Java, Indonesia has initiated small-scale rural biogas adoption as it presumably reduces the consumption of LPG, firewood, chemical fertilizer and (women’s) overall workload, which especially suitable due to the relatively high use of cattle in that area As environmental problems such as global warming from fossil fuel consumption and land degradation from deforestation and overuse of chemical fertilizers, and socio-economic problems as gender empowerment and self-sufficiency are becoming more pressing, it is useful to analyse the benefits of biogas as an alternative renewable energy technology (RET) provision in rural areas. This paper aims to assess the benefits of rural biogas adoption from an economic perspective, through calculating the direct and indirect benefits obtained from biogas adoption in Selo. For this, a field survey was carried out in Selo to ask questions to biogas users (N=21) and non-users (N=5) on their energy and fertilizer consumption, as well as emissions reductions resulting from biogas adoption. Based on the analysis, oon average, a household with biogas saves 490 kWh month–1, 20,000 IDR month–1,185 kg CO2e month–1.Chemical fertilizer consumption remains remarkably high, which may due to a lack of awareness on the potential of digester slurry by the farmers, for indeed, reduction of chemical fertilizer use would help address some environmental problems. Biogas quality of one household has also been determined by comparing its heating value to that of methane; the methane percentage (MP) was approximately 31%. The quality is considerably lower than expected from the literature (i.e. around 60%), which may be due to the farmers neither mixing nor supplying water to the dung. Trainings providing methods for improving digester overall effectiveness to particularly the women-folk may enhance digester management and thus biogas production, as they form the main primary operatives. Despite the room for improvement, the existing results clearly show that biogas adoption significantly reduces greenhouse gas (GHG) emissions, household energy costs, workload, improves environmental conditions and generates income through carbon credit exchange. Therefore, under the notions of sustainable development, environmental preservation and self-sufficiency, policy makers and NGOs should expedite their support in biogas development, e.g. by providing subsidies and awareness raising.


2021 ◽  
Vol 2021 (2) ◽  
pp. 82-94
Author(s):  
Vasyl Zhelykh ◽  
◽  
Yurij Furdas ◽  
Stepan Shapoval ◽  
Olena Savchenko ◽  
...  

Ukraine has significant land resources for agriculture and is able to provide its population not only with food but also with raw materials for bioenergy. The article presents a graph of heat capacities and the distribution of heat flows in a bioreactor. The dependences for determining the heat fluxes of flat and cylindrical surfaces are presented. The article outlines the present state of utilization of fallen leaves of trees. The method of utilization by anaerobic fermentation is proposed. The design of bioreactors and the main factors influencing the methane formation process are considered. The methodology for calculating the biogas production process is presented. The productivity of the bioreactor has been determined, depending on the temperature of the raw material and the time of hydraulic resistance


Author(s):  
Lubomír Hnilica ◽  
Jiří Fryč ◽  
Bořivoj Groda

This work compares the operating system of anaerobic fermentation of agricultural biogas plants with realization using biowaste. It deals with the operation system of anaerobic fermentation of agricultural biogas plants and implement an appropriate system to enable the use of biowaste. Based on the comparison of technological solutions and operational parameters of specific sites has been designed to allow the system biowaste were made a practical experiment to verify the assumption of increased biogas production. In experiments used substrates, which are industrially produced from the available bio-wastes, treated and then provide to operator of biogas plants. The work was carried out practical measurements to verify the production of biogas from different substrates. Utilize of nominal electric power using biowaste amounted up to 97.66%. Processing of such modified substrates in anaerobic digestion technology can greatly affect the amount of energy crops. Benefit of waste is governed primarily by such projects, where is the problem of ensuring sufficient energy crops. The proposed composition of raw materials also allows the implementation of the existing ope­ra­tion of anaerobic digestion. Operational data on real operations demonstrate the real possibility of further development of the area and secondly the use of biogas plants as well as in the preparation of suitably prepared substrates for the operators. The entire data set underwent a complete statistical analysis. Differences between variants were statistically significant.


BioResources ◽  
2020 ◽  
Vol 15 (1) ◽  
pp. 1747-1762
Author(s):  
Muhammad Awais ◽  
Muhammad Salman Mustafa ◽  
Muhammad Asif Rasheed ◽  
Farrukh Jamil ◽  
Syed Muhammad Zaigham Abbas Naqvi

Lignocellulosics are abundant and readily available as the raw material for the production of biogas. However, the structure of this raw material needs to be modified to increase its digestibility during anaerobic fermentation. Various pretreatment methods that have been proposed in the past have been examined; however, the focus of the present study was to pretreat a wheat straw (WS) substrate using an advanced oxidation process (AOP) with a metal oxide photocatalyst combined with ultraviolet (UV) irradiation. Four different metal oxides were examined at 0, 1, 2, 3, and 4% dosages (w/w) coupled with UV irradiation for 0, 60, 120, and 180 min. Experimental results revealed that among all metal oxide catalysts examined, only the 4% CuO combined with 180 min UV irradiation caused the most lignin to be released from the WS. This resulted in the highest vanillic acid (VA) being produced (4.32 ± 0.15 mg VA/g VS). This WS pretreatment also resulted in a biomethane potential (BMP) assay of 384 ± 16 NmL CH4/g VS. The BMP assay results revealed a maximum 28% increase in biodegradability and a 57% increase in methane production. The use of either metal oxide catalysts or UV irradiation alone resulted in ineffective WS pretreatment.


Processes ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 142 ◽  
Author(s):  
Dinko Đurđević ◽  
Ivona Hulenić

Agriculture is one of the leading sectors on the global level contributing to greenhouse gas (GHG) emissions increase. With the utilization of biogas production technology within the agriculture sector, ecological benefits could be achieved, with immediate economic profit. Therefore, to retain economic profit and environmental sustainability, implementation of bioeconomy principles is of key importance. This paper examines four options of digestate treatment, which is identified as one of the highest operational cost for the biogas plant. A simple and robust model in Excel Solver was developed to determine the best solution for minimising GHG emissions and maximise profit for the biogas plant operator, through an upgrade of the plant with digestate treatment technologies. The model was implemented on a case of a Croatian biogas plant and the best solution in terms of GHG reduction and profit increase proved to be fertilizer production (Option 1), through a crystallization process of struvite within the digestate. This option obtains a significant reduction in GHG emissions compared to standard biogas production without additional upgrades (Option 4), by over 90%, and increase of profit for the biogas plant operator, which diversifies the income source and creates multiple positive impacts on the environment.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1031 ◽  
Author(s):  
Rawan Hakawati ◽  
Beatrice Smyth ◽  
Helen Daly ◽  
Geoffrey McCullough ◽  
David Rooney

Biogas resulting from anaerobic digestion can be utilized for the production of liquid fuels via reforming to syngas followed by the Fischer-Tropsch reaction. Renewable liquid fuels are highly desirable due to their potential for use in existing infrastructure, but current Fischer-Tropsch processes, which require operating pressures of 2–4 MPa (20–40 bar), are unsuitable for the relatively small scale of typical biogas production facilities in the EU, which are agriculture-based. This paper investigates the feasibility of producing liquid fuels from biogas-derived syngas at atmospheric pressure, with a focus on the system’s response to various interruption factors, such as total loss of feed gas, variations to feed ratio, and technical problems in the furnace. Results of laboratory testing showed that the liquid fuel selectivity could reach 60% under the studied conditions of 488 K (215 °C), H2/CO = 2 and 0.1 MPa (1 bar) over a commercial Fischer–Tropsch catalyst. Analysis indicated that the catalyst had two active sites for propagation, one site for the generation of methane and another for the production of liquid fuels and wax products. However, although the production of liquid fuels was verified at atmospheric pressure with high liquid fuel selectivity, the control of such a system to maintain activity is crucial. From an economic perspective, the system would require subsidies to achieve financial viability.


Sign in / Sign up

Export Citation Format

Share Document