scholarly journals Study of regime parameters of the fermenter in the production of biogas from animal liquid waste materials

2021 ◽  
Vol 286 ◽  
pp. 02010
Author(s):  
Penka Zlateva ◽  
Angel Terziev ◽  
Krastin Yordanov

The focus of the present study is a small biogas power plant for anaerobic fermentation of several types of animal waste raw materials used for biogas production. The impact of some of the characteristics of substances such as composition, temperature, humidity, and pH of the mixture in the bioreactor has been considered. The above is vital for optimizing the fermentation process, and also to improve the biogas production process. The plant is located in Northeastern Bulgaria and the raw liquid manure is supplied by several neighboring small farms. The annual quantities of raw waste are as follows: cow manure - 1252 t / a; chicken manure - 427 t / a and pig manure - 639 t / a. The manure is collected in a preliminary tank and then pumped to the bioreactor. The fermenter itself is a hermetically sealed and thermally insulated tank where constant temperature is maintained. It is equipped with a stirring system, which helps the mixing and homogenization of the substrate. The tests were performed during three charges of the installation. The fermentation takes approximately 23 up to 25 days. The experiments were performed during the summer and autumn seasons when the ambient air temperature varies from 28 to 45 °C. The biogas can be used as an energy carried as the obtained organic fertilizer is suitable for agriculture purposes.

2011 ◽  
Vol 51 (No. 6) ◽  
pp. 262-266 ◽  
Author(s):  
N. Voća ◽  
T. Krička ◽  
T. Ćosić ◽  
V. Rupić ◽  
Ž. Jukić ◽  
...  

The aim of this paper is to determine the difference in quality of the digested residue after the process of anaerobic digestion by using different input raw materials. The research was conducted in the Republic of Austria on four facilities for biogas production. The raw materials used for biogas production were chicken manure, pig manure, Sudan grass and organic household waste. The research included chemical analysis and bacteriological tests of the samples taken. It was found that the digested residue in all of the samples, all of which are mildly alkaline, contains a low level of dry matter, 70% of which is organic matter. Biogenic elements were present in moderate concentration; the values of heavy metals were within approved limits. This analysis leads to the conclusion that the digested residues of all input materials can be used in agricultural production, especially so in plant production and grassland cultivation. Mesophilic and thermophilic microorganisms were found in the digested residue samples, but there were no cryophilic microorganisms and no pathogenic bacteria.


Author(s):  
Jiří Fryč ◽  
Josef Los ◽  
Tomáš Lošák

This study concerns the analysis of operating anaerobic fermentation systems of agricultural biogas station and implementing a suitable system enabling the use of a mixture of solid and liquid biowaste. The tests made use of liquid substrates commercially offered to biogas station operators. The study evaluates practical measurements at an agricultural biogas station in order to evaluate the biogas production from these substrates and the efficiency of transforming input material to usable energy. The use of such treated substrates for the anaerobic fermentation technology may have a substantial influence on the volume of dosed energy crops. The mixture of input substrates consisting of liquid cattle excrements, silage corn, solid and liquid waste from food processing, animal waste and glycerine water was experimentally validated. This mixture was compared with the operation using liquid cattle excrements and silage corn. It was concluded that the proposed composition of input raw materials makes it possible to increase the production of biogas and el. power. On the other hand, it was identified that the energy content of the input raw materials is not optimally transformed into usable energy. This is why the proposed mixture of input materials with biowaste is not recommended for use at the used proportion.


2017 ◽  
Vol 19 (3) ◽  
pp. 309 ◽  
Author(s):  
Putri Wening Ratrinia ◽  
Uju Uju ◽  
Pipih Suptijah

<p>Abstract<br />Organic fertilizer is highly recommended for soil and plant because it can improve the productivity and repair physical, chemical, and biological of soil. Sargassum sp. and surimi liquid wastes contain organic matter and nutrient needed by plants and soils. The addition of marine bio-activator which contains bacterial isolates from litter mangrove serves to accelerate the composting time and increases the activity of microorganisms in the decomposition process. The purpose of this study was to determine optimum time and the best formulation of decomposition process organic fertilizer. Raw materials used a waste of seaweed Sargassum sp., marine bio-activator and surimi liquid waste from catfish (Clarias sp.). The research was conducted six treatments control, Sargassum sp. + marine bio-activator, surimi liquid waste , Sargassum sp. + marine bio-activator + surimi liquid waste 80%, 90%, 100%. All treatments were fermented for 9 days and analysed the C-organic, total N, C/N ratio, P2O5, K2O on days 0, 3, 6 and 9. The results showed the optimum fermentation period was on the 6th day. The most optimum concentration of surimi liquid waste added was at a concentration of 90%, with characteristics of the products was C-organic 0.803±0.0115%, total N 740.063±0.0862 ppm, C/N ratio 10.855±0.1562, P2O5 425.603±0.2329 ppm, K2O 2738.627±0.2836 ppm.</p>


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2742
Author(s):  
Raquel Iglesias ◽  
Raúl Muñoz ◽  
María Polanco ◽  
Israel Díaz ◽  
Ana Susmozas ◽  
...  

The present work reviews the role of biogas as advanced biofuel in the renewable energy system, summarizing the main raw materials used for biogas production and the most common technologies for biogas upgrading and delving into emerging biological methanation processes. In addition, it provides a description of current European legislative framework and the potential biomethane business models as well as the main biogas production issues to be addressed to fully deploy these upgrading technologies. Biomethane could be competitive due to negative or zero waste feedstock prices, and competitive to fossil fuels in the transport sector and power generation if upgrading technologies become cheaper and environmentally sustainable.


2021 ◽  
Vol 13 (3) ◽  
pp. 1356
Author(s):  
Gonzalo Wandosell ◽  
María C. Parra-Meroño ◽  
Alfredo Alcayde ◽  
Raúl Baños

Sustainable development is a global objective that aims to address the societal challenge of climate action, the environment, resource efficiency, and raw materials. In this sense, an important strategy is the promotion of green packaging, that is, the use of sustainable materials and designs for the packaging of goods. In recent years, many research works have been published in the specialised area covering the different perspectives and dimensions of green packaging. However, to our knowledge, no previous investigations have analysed the research activity on green packaging from business and consumer perspectives. The present study intends to fill this gap by analysing all of the publications found in the Scopus database with the help of visual analytic tools, including word clouds and Gephi network visualization software. More specifically, our study analyses the impact of green packaging from business and consumer viewpoints, including some specific issues such as the design and materials used in green packaging, green packaging costs, marketing strategies and corporate social responsibility related to green packaging, and the impact of green packaging in waste management, the circular economy, logistics, and supply chain management. The results obtained reveal the growing interest of scholars and researchers in all of these dimensions, as is made patently clear by the increasing number of journal publications in recent years. The practical implications of this study are significant, given the growing awareness among companies and consumers about the importance of the promotion of sustainable development through green packaging alternatives. More specifically, the results of this research could be very useful for all of those agents who are interested in learning about the main lines of research being developed in the field of green packaging.


1930 ◽  
Vol 8 (01) ◽  
pp. 127-135
Author(s):  
Hasmalina Nasution ◽  
Henny D J ◽  
Ulsanna Laira

Liquid organic fertilizer is organic fertilizer in a liquid preparation as apart or all of from organic compound such as plant, animal, and industry waste, solid or liquid phase Nutrients contained therein form of a solution that is so fine that is easily absorbed by plants, though the leaves or stems. Organic fertilizer is one of solution to recovery physical, chemical and biological soil mineral from harmful effect at synthetic fertilize. Liquid fertilizer is obtained from the fermentation process solid first and then proceed with the extraction and liquid anaerobic fermentation process.In the fermentation process, the role of microbes largely determine the resulting product.The aim of this study was to determine the potential of liquid waste out as a liquid organic fertilizer with the addition of leaves of Gliricidia plants with a variation of 200 gr and 400 gr to increase mocro and micro nutrients with EM4 bacteria activator by fermentation procces. Macro nutrients result show Nitrogen 1250,57 ppm, phosphorus 1626,51 ppm potasium 2987,45 ppm, C-organic 8550 ppm, the ratio of C/N 7, and micro nutrients (Fe, Cu, Mn) C organic result Fe 57.99 ppm, Cu 0.30 ppm, Mn 2.83 ppm in the optimum fermentation time of 5 days with additional variations Gliricidia leaves 400 g. Macro nutrient of Organic fertilizer produced meets the quality requirements of the regulation which has set the levels of nitrogen, phosphorus and potassium in the amount of <2% or <20000, C organic ≥ 4% (40000 ppm), the ratio of C / N ≥ 4 ppm. Micro nutrients result do not meet the quality requirements of the agriculture minister No.28/Permentan/OT.140/2/2009. quality regulations for, and metal 100-1000 ppm.


Agriculture ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 166 ◽  
Author(s):  
George F. Antonious ◽  
Eric T. Turley ◽  
Mohammad H. Dawood

Soil enzymes (urease, invertase, acid and alkaline phosphatase) activity in the rhizosphere of field-grown tomato plants were used to monitor the impact of soil amendments (SA) and SA mixed with biochar on soil microbial activity four months after addition of amendments. The soil treatments were sewage sludge (SS); horse manure (HM); chicken manure (CM); vermicompost (worm castings); commercial inorganic fertilizer; commercial organic fertilizer; and no-mulch (NM) native soil used for comparison purposes. Soil treatments also were mixed with 10% (w/w) biochar to investigate the impact of biochar on soil enzymes activity. The results showed a significant increase in soil urease and invertase activities after incorporation of SA to native soil. Vermicompost and HM were superior in increasing urease and invertase activity four months after their addition to native soil. Alkaline phosphatase activity fluctuated among the soil treatments, revealing some obstruction of its activity. SS amended with biochar increased acid phosphatase activity by 115% four months after SS addition. Other than alkaline phosphatase, organic manure enhanced soil biological activity (microbial biomass and release of enzymes), indicating that the use of manures, rather than inorganic fertilizers, in crop production is an affordable and sustainable agricultural production system.


2019 ◽  
Vol 65 (No. 7) ◽  
pp. 369-376
Author(s):  
Marta Kupryś-Caruk ◽  
Sławomir Podlaski

The aim of the research was to determine the impact of double-cut harvest system on yield, as well as on suitability of Miscanthus × giganteus biomass for ensiling and biogas production. Biomass was harvested at the end of June (harvest I) and at the beginning of October (harvest II, regrowth). A single-cut regime at the end of October was also conducted. Biomass from harvests I and II was ensiled and subjected to anaerobic fermentation. The total dry matter (DM) yield from double-cut harvest system was similar to the DM yield from one-cut harvest, but two harvests per year had a positive effect on chemical composition of the biomass. C/N ratio and lignin content in the biomass from harvest I was lower compared to the single-cut biomass. Double harvest biomass was susceptible to ensiling, however, the biomass from harvest I characterized by low dry matter and water soluble sugars content resulted in poorer quality of the obtained silage (butyric acid was present). There were no significant differences between the methane yields obtained from ensiled biomass from harvests I and II.


2020 ◽  
Vol 145 ◽  
pp. 02065
Author(s):  
Xiaohong Huang ◽  
Jing Jiao ◽  
Jihua Du ◽  
Zunxiang Li

Using agricultural wastes for anaerobic fermentation to produce biogas can not only realize the resource utilization of the wastes, but also prevent the environmental issues caused by straw burning. Sugarcane leaves contain waxy layer, which will cause problems such as difficulty in degradation, long-time fermentation and low biogas production. This paper studies the effects on three pre-processing methods of adding rush rot agent, natural retting for 7 days and water moisture for 24 hours of dry anaerobic fermentation of sugarcane leaves and pig manure. The results show that natural retting for 7 days has the advantage of daily biogas production when the fermentation period is less than 20 days, but this method is not obviously different from that of water moisture for 24 hours. When taking total biogas production volume and volume loading rate as the indicators, water moisture for 24 hours is the best pre-processing method for dry anaerobic fermentation of sugarcane leaves and pig manure when the fermentation period is more than 20 days.


Sign in / Sign up

Export Citation Format

Share Document