scholarly journals ENERGY SAVING OF MODULAR BUILDINGS WITH THE HELP OF BIOGAS TECHNOLOGIES

2021 ◽  
Vol 2021 (2) ◽  
pp. 82-94
Author(s):  
Vasyl Zhelykh ◽  
◽  
Yurij Furdas ◽  
Stepan Shapoval ◽  
Olena Savchenko ◽  
...  

Ukraine has significant land resources for agriculture and is able to provide its population not only with food but also with raw materials for bioenergy. The article presents a graph of heat capacities and the distribution of heat flows in a bioreactor. The dependences for determining the heat fluxes of flat and cylindrical surfaces are presented. The article outlines the present state of utilization of fallen leaves of trees. The method of utilization by anaerobic fermentation is proposed. The design of bioreactors and the main factors influencing the methane formation process are considered. The methodology for calculating the biogas production process is presented. The productivity of the bioreactor has been determined, depending on the temperature of the raw material and the time of hydraulic resistance

2011 ◽  
Vol 57 (No. 4) ◽  
pp. 137-143 ◽  
Author(s):  
M. Herout ◽  
J. Malaťák ◽  
L. Kučera ◽  
T. Dlabaja

The aim of the work is to determine and analyse concentrations of individual biogas components according to the used raw materials based on plant biomass. The measurement is focused on biogas production depending on input raw materials like maize silage, grass haylage and rye grain. The total amount of plant biomass entering the fermenter during the measurement varies at around 40% w/w, the rest is liquid beef manure. The measured values are statistically evaluated and optimised for the subsequent effective operation of the biogas plant. A biogas plant operating on the principle of wet anaerobic fermentation process is used for the measurement. The biogas production takes place during the wet fermentation process in the mesophile operation at an average temperature of 40°C. The technology of the biogas plant is based on the principle of using two fermenters. It follows from the measured results that maize silage with liquid beef manure in the ratio of 40:60 can produce biogas with a high content of methane; this performance is not stable. At this concentration of input raw material, the formation of undesirable high concentrations of hydrogen sulphide occurs as well. It is shown from the results that the process of biogas production is stabilised by the addition of other components of plant biomass like grass haylage and rye grain and a limitation of the formation of hydrogen sulphide occurs. It follows from the results that the maize silage should form about 80% w/w from the total amount of the plant biomass used.


2013 ◽  
pp. 81-86
Author(s):  
Györgyi Bíró ◽  
Lili Mézes ◽  
János Borbély ◽  
János Tamás

In Hungary the renewable energy utilization is planned to achieve 13% by 2020. Biogas production is one of the fields with the largest energy potential. Achieving high efficiency during continuous production despite the mixed and variable composition of input materials is the most common problem which the newly built biogas plants using agricultural raw materials have to deal with. The first experimental reactors at the Department of Water and Environmental Management were built 12 years ago. Control and automation of the four separated bioreactors were executed with ADVANTECH GENIE 3.0 software which granted pre-programmed measurement and points of intervention for pH, temperature, CH4, CO2, H2S, and NH3. The system became out-of-data, therefore in 2010 it has been redesigned and tested. The system is controlled by Compair Proview SCADA (Supervisory Control and Data Acquisition) software running on Linux platforms. The Fusarium infection caused serious yield-losses in cereal production in 2010. In the case of cereal products, which non-utilizable as forage seems an optimal solution is utilizing as biogas raw material. The raw material was based on the Fusarium infected maize. In the recent publication infotechnological and technological experiences of the pilot test period are evaluated as well as direction of future development is defined.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Nazar Tkach ◽  
◽  
Tetiana Mirzoieva ◽  

The article presents a study on the justification of the economic feasibility of processing cereals into biogas. Аt the first stage the sown areas and productivity of separate agricultural crops in the investigated enterprises of Brovarsky district, Kyiv region were analyzed. The tendency to increase the yield of agricultural crops in the studied enterprises was revealed. This was seen as evidence that they could potentially be fully self-sufficient in raw materials for the production of gaseous biofuels. At the second stage of the study, the potential volume of the raw material base for biogas production in the studied enterprises was calculated, potential volume of biogas production and economically feasible volume of biogas production for each enterprise. It is proposed to use part of the grown grain for bioenergy production, and this part should be 10-15% of the gross harvest of grain enterprises in order to prevent the food crisis in the country. At the third stage of the study to determine the economic efficiency of biogas production from wheat and corn, investment costs were calculated, necessary for the implementation of the project to install a biogas plant in the studied enterprises. The authors calculated the investment costs required to implement the project of installing a biogas plant at the studied enterprises. The authors also analyzed the costs of each company for future projects. Finally, the economic efficiency of the proposed project for biogas production in the studied enterprises of Brovary district, Kyiv region is calculated, the economic efficiency of the project in the long run is analyzed with the use of discounted indicators of economic efficiency with a life cycle of 5 years. It was found that the implementation of projects for biogas production may be accompanied by high efficiency, all enterprises will receive profits from the implementation of investment projects for the production of biogas and biofertilizers with the subsequent sale of biogas and the use of biofertilizers for their own needs.


2019 ◽  
Vol 16 (1) ◽  
pp. 15-19
Author(s):  
Natalia Głowacka ◽  
Ján Gaduš

Abstract The article reviews the energy potential of microalgae as an alternative raw material for anaerobic digestion. Currently, energy security is one of the main topics among researchers. The amount of generated fossil fuels is limited, it is a question of time when fossil fuels will not continue to be accessible at low cost. There is a need to find an alternative carrier of energy which will replace the fossil fuels in the World. Green microalgae can be proposed as a possible bio raw-material, which can be used as an input material in order to produce energy. Lots of alternative technologies of algae cultivation are currently being developed all over the world. There is a necessity to search for a sensible way to produce algal biomass for bioenergy purposes, while maintaining all requirements involved in environmental and economic issues. The research results presented in the science article show that microalgae biomass is the proper alternative material for biogas production with the method of anaerobic fermentation. We believe that these research results can contribute to the future development of all forms of renewable energy in the Slovak Republic.


2021 ◽  
Vol 286 ◽  
pp. 02010
Author(s):  
Penka Zlateva ◽  
Angel Terziev ◽  
Krastin Yordanov

The focus of the present study is a small biogas power plant for anaerobic fermentation of several types of animal waste raw materials used for biogas production. The impact of some of the characteristics of substances such as composition, temperature, humidity, and pH of the mixture in the bioreactor has been considered. The above is vital for optimizing the fermentation process, and also to improve the biogas production process. The plant is located in Northeastern Bulgaria and the raw liquid manure is supplied by several neighboring small farms. The annual quantities of raw waste are as follows: cow manure - 1252 t / a; chicken manure - 427 t / a and pig manure - 639 t / a. The manure is collected in a preliminary tank and then pumped to the bioreactor. The fermenter itself is a hermetically sealed and thermally insulated tank where constant temperature is maintained. It is equipped with a stirring system, which helps the mixing and homogenization of the substrate. The tests were performed during three charges of the installation. The fermentation takes approximately 23 up to 25 days. The experiments were performed during the summer and autumn seasons when the ambient air temperature varies from 28 to 45 °C. The biogas can be used as an energy carried as the obtained organic fertilizer is suitable for agriculture purposes.


2020 ◽  
Vol 11 (7) ◽  
pp. 1664
Author(s):  
Valentyna ARANCHIY ◽  
Ilona YASNOLOB ◽  
Nataliia DEMIANENKO ◽  
Oleksandr BEZKROVNYI ◽  
Olena MYKHAILOVA ◽  
...  

The comparison of eco-friendliness of paper packaging materials from wood and alternative raw materials (straw, fallen leaves, etc.) with polyethylene packaging was made. The analysis was conducted according to the following criteria: consumption of raw materials, electricity, rubbish formation, and price of selling products. Advantages and drawbacks of each raw material type were characterized. It has been mentioned that polymers make a considerable and increasing part in manufacturing packaging materials. The prospects of producing paper bags from leaves and their sales prices were analyzed. The terms of degradation of packages made from different materials were analyzed. The conclusion has been made that paper from fallen leaves is not cheap, but it is important considering its environmental safety.  SWOT analysis of “Spicy pack” enterprise’s activity was analyzed (it will be engaged in manufacturing spicy packages for food products from innovative raw materials). The expediency of making spicy packages for food products was substantiated. In particular, ‘Spicy pack” logo consisting of only eco-paper (made from fallen leaves) and spices was suggested. Such packaging will help prolong 4 times food products’ suitability.  Such spices as cloves, rosemary, oregano, curcuma, and sage having antiseptic properties will be added to packages and napkins. These products will be reused for two-three weeks, then spices vanish, and the paper can be processed.


2011 ◽  
Vol 236-238 ◽  
pp. 178-182
Author(s):  
Yi Guo Deng ◽  
Jin Li Wang ◽  
Jing Jiao ◽  
Yong Zheng ◽  
Gang Wang ◽  
...  

A self-designed constant temperature fermenter was manufactured and used for this study. Dry anaerobic fermentation experiments were conducted with sugarcane leaf residue as raw material. With the C/N ratio being 25:1, various total solids concentrations (TS), inoculum sizes and fermentation temperatures were selected to study biogas production characteristics. The experiment results showed that biogas yield increased rapidly during the initial stage of reaction, decreased quickly after reaching the peak, and the decrease slowed down at some level. Orthogonal experiment results showed that both fermentation temperature and solids concentration showed significant effects on gas production yield. Fermentation temperature showed the most significant effect, while the effect of inoculum size was not significant on gas yield. The optimum fermentation performance was obtained at 20% solid content, 35°C fermentation temperature, and 30% inoculum size.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2843
Author(s):  
Krystyna Zielińska ◽  
Agata Fabiszewska ◽  
Katarzyna Piasecka-Jóźwiak ◽  
Renata Choińska

A new direction in the use of lactic acid bacteria inoculants is their application for renewable raw materials ensiling for biogas production. The aim of the study was to demonstrate the possibility of stimulating the synthesis of propionic acid in the process of co-fermentation of selected strains of Lactobacillus buchneri and L. diolivorans as well as L. buchneri and Pediococcus acidilactici. L. buchneri KKP 2047p and P. acidilactici KKP 2065p were characterized by the special capabilities for both synthesis and metabolism of 1,2-propanediol. L. diolivorans KKP 2057p stands out for the ability to metabolize 1,2-propanediol to propionic acid. As a result of the co-fermentation a concentration of propionic acid was obtained at least 1.5 times higher in the final stage of culture in comparison to cultivating individual species of bacteria separately. The results of in vitro experiments were applied in agricultural practice, by application of two lactic acid bacteria inoculants in ensiling of grass silage and improving its suitability for biogas production. Grass silages made with the addition of the inoculant were characterized by the content of 1,2-propanediol, 1-propanol and propionic acid ensured extension of the aerobic stability from 4 to 7 days in comparison to untreated silages. It was found that the use of both inoculants resulted in an approximately 10 - 30% increase in biogas yield from this raw material.


Author(s):  
S. T. Antipov ◽  
V. V. Toroptsev ◽  
A. N. Martekha ◽  
A. A. Berestovoy ◽  
I. S. Yurova

The analysis of the influence of the main factors on the kinetics of the drying process of fermented wheat raw materials in a vibro-boiling layer is presented. The purpose of the study is to study the influence of the main technological parameters on the kinetics of the drying process of fermented wheat raw materials in a vibrating boiling overflowing layer at atmospheric pressure. The main factors affecting the drying process were selected: the temperature of the drying agent supplied to the dryer, the speed of the drying agent, the vibration amplitude of the gas distribution shelves, the vibration frequency of the gas distribution shelves. The influence of temperature and air velocity on the drying process of raw materials, the influence of the amplitude and frequency of oscillations of the gas distribution grid on the kinetics of the drying process of the fermented product, as well as the influence of the specific load of the product on the process of moisture removal are shown An analysis of the curves shows that with an increase in the amplitude of the oscillation, it reduces the drying time, and an increase in the frequency of oscillation of the shelves contributes to a decrease in the drying time. In this case, a uniform increase in the drying intensity is observed over the entire range of the amplitudes considered. An increase in the oscillation frequency of the gas distribution grid also helps to reduce the duration of the drying process of fermented wheat raw materials. It should be noted that the amplitude of the oscillations more strongly affects the decrease in the drying time of the raw material than the frequency Thus, we concluded that in the intervals under study the changes in the amplitude and frequency of vibrations of perforated shelves on the drying process of fermented wheat raw materials are more strongly affected by the amplitude of vibrations. In addition, when choosing vibration parameters, the specific load of the material on the grate and its initial humidity should be taken into account..


2019 ◽  
Vol 13 (3) ◽  
Author(s):  
L. Levandovsky ◽  
O. Vitriak ◽  
M. Demichkovska

In recent decades, there has been a tendency in the world to increase ethanol production significantly in order to solve energy problems, that is, to use it as a biofuel. The factors determining the production cost of targeted biotechnological products include the output of these products from the raw materials used. One of the modern and effective ways to intensify alcoholic fermentation and reduce the cost of fuel ethanol is yeast recirculation. The research objects were: raw material (sugarbeet molasses), molasses wort, yeast Saccharomyces cerevisiae of the strain M-5, fermented wash and its distillates. In the raw materials, intermediate products, and fermented wash, the techno-chemical parameters recommended by the current technology regulations for obtaining spirit from molasses have been determined. Acoholic fermentation was carried out in an industrial environment, in a battery of series-connected fermentors. Recirculation of yeast was carried out by separating it from the final stage of fermentation, concentrating it on the separator, and introducing it into the first fermentor. The experimental data obtained prove that for wort fermentation, it is effective to use yeast that recirculates in the anaerobic stage. It has been established that the alcohol-forming power of recycled yeast increases as the yeast adapts to the environment in which it has been staying for a long time. The yeast becomes more active biochemically, with more efficient metabolism. Its need for continuously cultured biomass is reduced, the share of aerobically assimiliated sugars decreases, and, consequently, the losses during yeast generation are fewer. At the same time, accelerating the initial period of anaerobic fermentation helps inhibit the biosynthesis of glycerol, the formation of which consumes the largest amount of sugar among all the secondary products. The parameters of molasses wort fermentation, with yeast biomass recirculating, have been determined in an industrial environment. It has been established that the alcohol output from the raw materials increases as the synthesis of secondary metabolic products weakens. The advantages of this fermentation method will be used in further studies, namely when fermenting molasses wort, with an increased concentration of dry matter, in order to reduce the specific heat energy consumption in production and to make it cheaper. The developed biotechnology of alcohol can be usefully employed to produce fuel ethanol, and increasing its production will contribute to Ukraine’s energy self-sufficience.


Sign in / Sign up

Export Citation Format

Share Document