scholarly journals Mineral Exploration in Mawat Region, Kurdistan-Iraq, Based on Satellite Data and Terrain Prospection

2021 ◽  
Vol 8 (4) ◽  
pp. 249-272
Author(s):  
Marinko Oluić ◽  
Sreten Romandić ◽  
Ratko Vasiljević

The main goal of the presented exploration was to estimate potential for mineralization in the Mawat ophiolitic massif in Kurdistan, Iraq. The aim of the study was to explore existing copper mineralization and assessor elements gold, platinoids and chromium. Geological exploration detected two types of Cu occurrence a) secondary Cu carbonates (malachite) and b) Cu sulfides (chalcopyrite-pyrite). The Mawat region is mostly built of ultrabasic and basic rocks: peridotites, gabbros, serpentinites and basalts which are heavily deformed, with faults mostly oriented NNW-SSE, and NE-SW. The first phase of exploration comprised digital processing of ASTER and QuickBird satellite images, with appropriate geometrical and radiometric corrections and transformation into coordinate system. Color composite images were produced in different scales. They served to define lithological composition, tectonic settings, location of the points of interest etc. The field work was designed to check satellite data in situ, with focus on perspective rock formations, which might host copper mineralization, and other elements. The host rocks of the ore occurrences are primarily gabbros and metagabbros intersected by diabase dykes, epidote and quartz veins. Secondary mineralization is the product of surficial weathering and it is represented by malachite and limonite. The geophysical survey was very useful in the detection of area with elevated induced polarization and low resistivity. Three perspective areas have been selected for detailed explorations: Waraz, Mirava-Chenara and Konjirin-Kuradawi. The concentration of copper varies highly in very wide ranges; the maximum measured concentration of Cu was determined in Waraz area 6.7%. Some rock samples also show concentration of gold from 0.36 to 2.59 ppm Au. Keywords: Mawat ophiolitic massif, geologic-geophysical explorations, copper mineralization, Kurdistan-Iraq

Author(s):  
Bjørn Thomassen ◽  
Johannes Kyed ◽  
Agnete Steenfelt ◽  
Tapani Tukiainen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Thomassen, B., Kyed, J., Steenfelt, A., & Tukiainen, T. (1999). Upernavik 98: reconnaissance mineral exploration in North-West Greenland. Geology of Greenland Survey Bulletin, 183, 39-45. https://doi.org/10.34194/ggub.v183.5203 _______________ The Upernavik 98 project is a one-year project aimed at the acquisition of information on mineral occurrences and potential in North-West Greenland between Upernavik and Kap Seddon, i.e. from 72°30′ to 75°30′N (Fig. 1A). A similar project, Karrat 97, was carried out in 1997 in the Uummannaq region 70°30′–72°30′N (Steenfelt et al. 1998a). Both are joint projects between the Geological Survey of Denmark and Greenland (GEUS) and the Bureau of Minerals and Petroleum (BMP), Government of Greenland, and wholly funded by the latter. The main purpose of the projects is to attract the interest of the mining industry. The field work comprised systematic drainage sampling, reconnaissance mineral exploration and spectroradiometric measurements of rock surfaces.


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Author(s):  
Bjørn Thomassen ◽  
Peter R. Dawes ◽  
Agnete Steenfelt ◽  
Johan Ditlev Krebs

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Thomassen, B., Dawes, P. R., Steenfelt, A., & Krebs, J. D. (2002). Qaanaaq 2001: mineral exploration reconnaissance in North-West Greenland. Geology of Greenland Survey Bulletin, 191, 133-143. https://doi.org/10.34194/ggub.v191.5141 _______________ Project Qaanaaq 2001, involving one season’s field work, was set up to investigate the mineral occurrences and potential of North-West Greenland between Olrik Fjord and Kap Alexander (77°10´N – 78°10´N; Fig. 1). Organised by the Geological Survey of Denmark and Greenland (GEUS) and the Bureau of Minerals and Petroleum (BMP), Government of Greenland, the project is mainly funded by the latter and has the overall goal of attracting the interest of the mining industry to the region. The investigated region – herein referred to as the Qaanaaq region – comprises 4300 km2 of ice-free land centred on Qaanaaq, the administrative capital of Qaanaap (Thule) municipality. Much of the region is characterised by a 500–800 m high plateau capped by local ice caps and intersected by fjords and glaciers. High dissected terrain occurs in Northumberland Ø and in the hinterland of Prudhoe Land where nunataks are common along the margin of the Inland Ice.


Author(s):  
Troels F.D. Nielsen ◽  
Henriette Hansen ◽  
C. Kent Brooks ◽  
Charles E. Lesher

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Nielsen, T. F., Hansen, H., Brooks, C. K., & Lesher, C. E. (2001). The East Greenland continental margin, the Prinsen af Wales Bjerge and new Skaergaard intrusion initiatives. Geology of Greenland Survey Bulletin, 189, 83-98. https://doi.org/10.34194/ggub.v189.5162 _______________ The rifted volcanic margin of East Greenland has remained a major area for field studies and the development of models for the dynamics of plume-related continental break-up since the start of the Danish Lithosphere Centre (DLC) in 1994. The studies cover a range of disciplines and geological processes from the early development of pre-break-up basin formation and sedimentation over the main phase of basaltic magmatism to the late stages of alkaline magmatism and structural re-equilibration. The East Greenland field activities in the summer of 2000, collectively referred to as EG 2000, were facilitated by a logistic platform provided by support from Statens Naturvidenskabelige Forskningsråd (SNF, the Danish Natural Science Research Council) and the Bureau of Minerals and Petroleum (BMP) in Nuuk, Greenland for the retrieval of 6 km of drillcore from the Skaergaard intrusion. During 1989 and 1990 mineral exploration had resulted in drilling of more than 15 km of core through the classic layered gabbros. The logistic platform also provided support for DLC and Geological Survey of Denmark and Greenland (GEUS) field work and projects throughout the Kangerlussuaq region and on the Blosseville Kyst (Fig. 1), as well as mineral exploration and petroleum company activities.


2021 ◽  
Author(s):  
Barbara Namysłowska-Wilczyńska

<p>This geostatistical study investigates the variation in the basic geological parameters of the lithologically varied deposit in mining block R-1 in the west (W) part of the Rudna Mine (the region Lubin – Sieroszowice, SW part of Poland).</p><p>Data obtained from the sampling (sample size N = 708) of excavations in block R-1 were the input for the spatial analyses. The data are the results of chemical analyses of the Cu content in the (recoverable) deposit series, carried out on channel samples and drilled core samples, taken systematically at every 15-20 m in the headings.</p><p>The deposit profile comprises various rock formations, such as: mineralized Weissliegend sandstones, intensively mineralized upper Permian dolomitic-loamy and loamy copper-bearing schists and carbonate rocks: loamy dolomite, striped dolomite and limy dolomite, of various thickness. No schists formed in some parts of block R-1, which are referred to as the schistless area. The deposit series here is considerably less mineralized (comparing with other mining blocks) even though the mineralization thickness of the sandstone and carbonate rocks reaches as much as 20 m.</p><p>The variation in the Cu content and thickness of the recoverable deposit and the estimated averages Z* of the above parameters were modelled using the variogram function and the ordinary (block) kriging technique. The efficiency of the estimations was characterized.</p><p>As part of the further spatial analyses the Z<sub>s</sub> values of the analysed deposit parameters were simulated using the conditional turning bands simulation. Confidence intervals for the values of averages based on the estimated averages Z* and averages <strong> </strong>based on the simulated values (realizations) Z<sub>s</sub>, showing the uncertainty of the estimations and simulations, were calculated.</p><p>The results of the analyses clearly indicate the shifting of the mineralized zone (the mineralizing solutions), sometimes into the sandstones while spreading throughout the floor of calcareous-dolomitic formations and sometimes into the carbonate rocks, partly entering the roof layers of sandstones. It can be concluded that the process of deposit formation and copper mineralization variation had a multiphase character and the lateral and vertical relocation of the valuable metal ores could play a significant role.</p><p>The combination of various geostatistical techniques - estimation and simulation - will allow for more effective management of natural resources of mineral resources, including copper ore deposits.</p>


1983 ◽  
Vol 115 ◽  
pp. 49-56
Author(s):  
B Chadwick ◽  
M.A Crewe ◽  
J.F.W Park

The programme of field investigations in the north of the Ivisartoq region begun in 1981 by Chadwick & Crewe (1982) was continued in 1982. Julia Park began mapping the Taserssuaq granodiorite, its host rocks and the Ataneq fault in the north-west. Dur team was joined by D. Bellur, Geological Survey of India, nominally as an assistant. In this report we present only summary notes of new findings relevant to the interpretation of the geometry and chronology of this segment of the Archaean crust in southern West Greenland. We use the established terminology for the Archaean rocks of the Godthåbsfjord region.


2017 ◽  
Vol 43 (3) ◽  
pp. 1528
Author(s):  
P. I Tsombos ◽  
A.D. Zervakou

The Institute of Geology and Mineral Exploration of Greece (I.G.M.E.), in the framework of CSF 2000 – 2006 (Community Support Framework 2000-2006), implemented the pilot project “Collection, Codification and Documentation of geothematic information for urban and suburban areas in Greece - pilot applications”. Geological, geochemical, geophysical, geotechnical, hydrogeological and other geothematic data concerning the urban and surrounding areas of Drama (North Greece), Nafplio & Sparti (Peloponnese) and Thrakomakedones (Attica) were collected. Drillings, geological and neotectonic mapping and other “in situ” measurements and field work took place. All initial and derived analogical and digital data were compiled and processed in specially designed geo-databases in GIS Environment. The final results are presented in geothematic maps and other digital products (DEMs, 2D – 3D surfaces, geodatabases). Such data constitute the essential knowledge base for land use planning and environmental protection in specific urban areas. Through this pilot project, new scientific approaches, methodologies and standards were developed and improved in order to apply to other future projects concerning the major cities of the whole country.


Minerals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 507 ◽  
Author(s):  
Lisard Torró ◽  
Joaquín Proenza ◽  
Julio Espaillat ◽  
Albert Belén-Manzeta ◽  
María Román-Alday ◽  
...  

The recently discovered Romero deposit, located in the Tres Palmas district, Cordillera Central of the Dominican Republic, has probable reserves of 840,000 oz gold, 980,000 oz silver and 136 Mlb copper. Mineralization is hosted by intermediate volcanic and volcaniclastic rocks of the lower stratigraphic sequence of the Cretaceous Tireo formation. The andesitic host rocks yield a U-Pb zircon concordia age of 116 ± 10 Ma. Au–Ag–Cu(–Zn) mineralization is divided into: (1) an upper domain with stacked massive sulfide lenses and sulfide dissemination within a 20-m-thick level of massive anhydrite-gypsum nodules, and (2) a lower domain with a high-grade stockwork mineralization in the form of cm-scale veins with open space fillings of fibrous silica and chalcopyrite, sphalerite, pyrite (+electrum ± Au–Ag tellurides). The δ34S values of sulfides from the upper (−7.6 and +0.9‰) and lower (−2.4 and +5.6‰) domains are consistent with a heterogeneous sourcing of S, probably combining inorganically and organically induced reduction of Albian-Aptian seawater sulfate. Despite this, a magmatic source for sulfur cannot be discarded. The δ34S (+19.2 and +20.0‰) and δ18O (+12.5 and +14.2‰) values of anhydrite-gypsum nodules are also consistent with a seawater sulfate source and suggest crystallization in equilibrium with aqueous sulfides at temperatures higher than 250 °C. These data point to a classification of Romero as a volcanogenic massive sulfide (VMS) deposit formed in an axial position of the Greater Antilles paleo-arc in connection with island arc tholeiitic magmatism during a steady-state subduction regime. Circulation of hydrothermal fluids could have been promoted by a local extensional tectonic regime expressed in the Tres Palmas district as a graben structure.


2020 ◽  
Author(s):  
Le Wang ◽  
Jeanne B. Percival ◽  
Jeffrey W. Hedenquist ◽  
Keiko Hattori ◽  
Kezhang Qin

Abstract Alteration mineralogy from shortwave infrared (SWIR) spectroscopy was compared with X-ray diffraction (XRD) analyses for samples from the Zhengguang intermediate sulfidation epithermal Au-Zn deposit, eastern Central Asian orogenic belt, northeast China. The SWIR and XRD analyses indicate that alteration minerals in the vein-adjacent halo mainly comprise quartz, illite, and locally pyrite (QIP) and chlorite, whereas samples from the pervasive propylitic alteration of host basaltic andesite lava contain epidote, chlorite, carbonate, montmorillonite, and locally illite. SWIR mineral identifications from automated mineral identification software may not always be accurate; thus, the results should be validated by the user. The wavelength position of the Al-OH (~2,200 nm; wAlOH) absorption feature can be used to approximate the composition of illite or white mica. However, caution is required when using the wAlOH value to assess paleotemperatures, as the composition of illite can be influenced by the composition of the host rocks or the hydrothermal fluid. In addition, values of the illite spectral maturity (ISM; ratio of the depth of the ~2,200 nm minima divided by the ~1,900 nm minima) can be affected by the presence of other hydrous minerals, quartz-sulfide veins, and absorption intensity (which can be a function of rock coloration). Despite these cautions, the spatial distribution and variation of the wAlOH and ISM values for illite suggest that the high paleotemperature hydrothermal upflow zones related to the Zhengguang Au-Zn deposit were located below ore zones I and IV, which are predicted to be proximal to the intrusive center of the system.


Sign in / Sign up

Export Citation Format

Share Document