scholarly journals EVALUASI AKURASI DIMENSI PADA OBJEK HASIL 3D PRINTING

2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Deni Andriyansyah ◽  
Sriyanto Sriyanto ◽  
Agus Jamaldi ◽  
Ikhwan Taufik

Fused Deposition Method (FDM) merupakan salah satu metode 3D printing yang paling populer digunakan. Teknologi FDM menawarkan proses manufaktur yang relatif lebih cepat dan murah bila dibandingkan dengan CNC atau injection moulding. Pada FDM, filament diumpankan ke dalam ekstruder yang dipanaskan pada temperatur tertentu kemudian didorong keluar melalui sebuah nozzle untuk menghasilkan lapisan-lapisan objek. Hingga saat ini, banyak komunitas yang menghasilkan mesin-mesin 3D printer skala kecil karena proyek-proyek teknologi 3D printing bersifat open-source. Masing-masing komunitas memiliki standar tersendiri dalam membuat mesin 3D printer sehingga salah satu masalah yang timbul dari aktifitas ini adalah akurasi objek hasil 3D printing yang kurang seragam. Penyimpangan geometri akan mempengaruhi proses desain dan produksi objek-objek hasil 3D printing. Hal ini terutama dalam pembuatan objek-objek yang memerlukan proses pemasangan/perakitan. Artikel ini bertujuan untuk mengetahui penyimpangan geometri objek hasil 3D printing yang dihasilkan dari mesin 3D printer FDM DIY. Pembuatan objek menggunakan 3D printing DIY mengalami deviasi pada dimensi geometri dan posisi. Deviasi geometri bervariasi dari -0,08 mm hingga +0,14 mm. Sedangkan deviasi posisi berada di rentang -0,08 mm hingga +0,12 mm. Berdasarkan data deviasi yang dihasilkan dari perbandingan di atas, maka pembuatan objek 3D printing dapat disesuaikan dengan simpangan masing-masing. Hal ini menjadi penting untuk mendapatkan objek dengan akurasi yang maksimal sehingga proses perakitan komponen dapat dilakukan dengan mudah dan sesuai dengan peruntukannya.

Author(s):  
Lamis R. Darwish ◽  
Mohamed T. El-Wakad ◽  
Mahmoud Farag

Abstract The extrusion systems of the widespread Fused Deposition Modeling (FDM) 3D printers enable printing only with materials in the filament form. This property hinders the usage of these FDM 3D printers in many fields where the printing materials are in forms other than filaments. Thus, this paper proposes a Heated Inductive-enabled Syringe Pump Extrusion (HISPE) multifunction open-source module with a potential application in bioprinting (i.e., extrusion-based bioprinting). The proposed HISPE module is designed to be cost-effective, simple, and easy to replicate. It is capable of replacing the conventional extrusion system of any open-source cartesian FDM 3D printer. This module widens both the range of the FDM 3D printing materials (e.g., bioinks, biopolymers, blends of materials, or composites) and their forms (e.g., hydrogels, powder, pellets, or flakes). The capabilities of the proposed module were investigated through 3D printing bone scaffolds with a filament diameter of 400 µm and pore size of 350 µm by a Polycaprolactone (PCL) biodegradable polymer in the pellets form. The morphological accuracy of the printed scaffolds was investigated by SEM. The investigation results confirm the accurateness of the proposed HISPE module in printing high-precision models.


Micromachines ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 523 ◽  
Author(s):  
Wei Goh ◽  
Michinao Hashimoto

Fused deposition modeling (FDM) has become an indispensable tool for 3D printing of molds used for sacrificial molding to fabricate microfluidic devices. The freedom of design of a mold is, however, restricted to the capabilities of the 3D printer and associated materials. Although FDM has been used to create a sacrificial mold made with polyvinyl alcohol (PVA) to produce 3D microchannels, microchannels with free-hanging geometries are still difficult to achieve. Herein, dual sacrificial molding was devised to fabricate microchannels with overhang or helical features in PDMS using two complementary materials. The method uses an FDM 3D printer equipped with two extruders and filaments made of high- impact polystyrene (HIPS) and PVA. HIPS was initially removed in limonene to reveal the PVA mold harboring the design of microchannels. The PVA mold was embedded in PDMS and subsequently removed in water to create microchannels with 3D geometries such as dual helices and multilayer pyramidal networks. The complementary pairing of the HIPS and PVA filaments during printing facilitated the support of suspended features of the PVA mold. The PVA mold was robust and retained the original design after the exposure to limonene. The resilience of the technique demonstrated here allows us to create microchannels with geometries not attainable with sacrificial molding with a mold printed with a single material.


2018 ◽  
Vol 184 ◽  
pp. 02013
Author(s):  
Tamás Templom ◽  
Timotei István Erdei ◽  
Zsolt Molnár ◽  
Edwin Shaw ◽  
Géza Husi

The pinnacle of 3D printing is its effect on the field of rapid prototyping. The major advantage comes from the fact that designers can quickly materialize a part or object, which then could be tested in practice, and can be effortlessly modified if needed. This obviously cuts the development expenses and time by a significant percent. Moreover, it’s possible to create complex and precise shapes with the technology, which would take more time and would be resource intensive if done by older methods, for example manual or automatic machining.


2018 ◽  
Vol 15 (2) ◽  
pp. 663-665 ◽  
Author(s):  
Nor Aiman Sukindar ◽  
Mohd Khairol Anuar Mohd Ariffin ◽  
B.T. Hang Tuah Baharudin ◽  
Che Nor Aiza Jaafar ◽  
Mohd Idris Shah Ismail

Open-source 3D printer has been widely used for fabricating three dimensional products. However, this technology has some drawbacks that need to be improved such as accuracy of the finished parts. One of the factors affecting the final product is the ability of the machine to extrude the material consistently, which is related to the flow behavior of the material inside the liquefier. This paper observes the pressure drop along the liquefier by manipulating the nozzle die angle from 80° to 170° using finite element analysis (FEA) for polymethylmethacrylate (PMMA) material. When the pressure drop along the liquefier is varied, the printed product also varies, thus providing less accuracy in the finished parts. Based on the FEA, it was found that 130° was the optimum die angle (convergent angle) for extruding PMMA material using open-source 3D printing.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 672 ◽  
Author(s):  
Elena Verdejo de Toro ◽  
Juana Coello Sobrino ◽  
Alberto Martínez Martínez ◽  
Valentín Miguel Eguía ◽  
Jorge Ayllón Pérez

New technologies are offering progressively more effective alternatives to traditional ones. Additive Manufacturing (AM) is gaining importance in fields related to design, manufacturing, engineering and medicine, especially in applications which require complex geometries. Fused Deposition Modelling (FDM) is framed within AM as a technology in which, due to their layer-by-layer deposition, thermoplastic polymers are used for manufacturing parts with a high degree of accuracy and minimum material waste during the process. The traditional technology corresponding to FDM is Polymer Injection Moulding, in which polymeric pellets are injected by pressure into a mould using the required geometry. The increasing use of PA6 in Additive Manufacturing makes it necessary to study the possibility of replacing certain parts manufactured by injection moulding with those created using FDM. In this work, PA6 was selected due to its higher mechanical properties in comparison with PA12. Moreover, its higher melting point has been a limitation for 3D printing technology, and a further study of composites made of PA6 using 3D printing processes is needed. Nevertheless, analysis of the mechanical response of standardised samples and the influence of the manufacturing process on the polyamide’s mechanical properties needs to be carried out. In this work, a comparative study between the two processes was conducted, and conclusions were drawn from an engineering perspective.


2013 ◽  
Vol 58 (4) ◽  
pp. 1415-1418 ◽  
Author(s):  
P. Dudek

Abstract In recent years, FDM technology (Fused Deposition Modelling) has become one of the most widely-used rapid prototyping methods for various applications. This method is based on fused fibre material deposition on a drop-down platform, which offers the opportunity to design and introduce new materials, including composites. The material most commonly used in FDM is ABS, followed by PC, PLA, PPSF, ULTEM9085 and mixtures thereof. Recently, work has been done on the possibility of applying ABS blends: steel powders, aluminium, or even wood ash. Unfortunately, most modern commercial systems are closed, preventing the use of any materials other than those of the manufacturer. For this reason, the Department of Manufacturing Systems (KSW) of AGH University of Science and Technology, Faculty of Mechanical Engineering And Robotics purchased a 3D printer with feeding material from trays reel, which allows for the use of other materials. In addition, a feedstock production system for the 3D printer has been developed and work has started on the creation of new composite materials utilising ceramics.


2021 ◽  
Author(s):  
Huzeng Zong ◽  
Qilun Cong ◽  
Tengyue Zhang ◽  
Yanjun Hao ◽  
Lei Xiao ◽  
...  

Abstract Fused deposition modelling (FDM) has been one of the most widely used rapid prototyping (RP) technologies, which has been attracted increasing attentions in the world. However, existing literatures about energetic material flow inside the 3D printer nozzle are sparse. For plunger 3D printer, we summarized the experimental and related literatures, finding that viscosity, temperature, outlet velocity, pressure, and nozzle diameter are the main factors to affect the flow state in the nozzle. Based on the actual printer nozzle structure, in this paper, a finite element model was established by SOLIDWORKS software firstly, meanwhile, the flow channel model of the nozzle was extracted and simplified. Secondly, the factors influencing the printing results were researched and analysed. In the end, numerical simulation on velocity field and temperature field was carried out by FLUENT software. Moreover, the printing test of HMX/TNT was also carried out by using EAM-D-1 3D printer. The printed sample shows that 3D printing is more satisfactory than conventional melt-casting ways to prepare high viscocity and unconventional structure explosives


Author(s):  
Budi Hadisujoto ◽  
Robby Wijaya

Additive manufacturing process known as the 3D printing process is an advanced manufacturing process including one of the components to support industrial revolution 4.0. The initial development of a 3D printing machine at Sampoerna University is the background of this research. The 3D printing setup of Fused Deposition Modeling (FDM) was built using H-bot moving mechanism by considering the rigidity aspect. The FDM printing method is selected due to its cost and reliability. In this early development, the brackets were custom made using a 3D printer with Polylactic Acid (PLA) material. The result showed that the software worked properly in accordance with the assembled mechanical and electrical parts. The 3D printer could print simple objects such as planes and cubes with small dimensions. However, the printing specimen still lacked accuracy caused by the less rigidity of linear rail brackets, less coplanar belt arrangement, and error in some electronic components.


Sign in / Sign up

Export Citation Format

Share Document