scholarly journals Applications of submerged fermentation for biodegradation and decolourisation of melanoidins by an isolate Alcaligenes denitrificans SAG5

2011 ◽  
Vol 3 (1) ◽  
pp. 68-74
Author(s):  
Baljeet Singh Saharan ◽  
Anita Rani

In laboratory conditions a bacterium was isolated, which was identified as Alcaligenes denitrificans SAG5.. The optimum decolourisation (72.6%) of melanoidin was achieved at pH 7.5 and temperature 37 °C within 4-6 days fermentation. The toxicity evaluation of distillery effluent with mung bean (Vigna radiata) revealed that the raw effluent is highly toxic as compared to treated effluent. This indicated that the effluent after bacterial treatment is ecofriendly.

Respuestas ◽  
2018 ◽  
Vol 23 (2) ◽  
pp. 62-74
Author(s):  
Johana Ramírez Olier ◽  
Margarita María Jaramillo Ciro ◽  
Beatriz González Agudelo ◽  
Liliana Rocío Botero Botero

The establishment of colonies of Atta cephalotes cutter ants under laboratory conditions has been proposed for the study and development of plague control products. However, few laboratories in Colombia have colonies of Atta cephalotes cutter ants, with food being a limiting factor given their sensitivity, selectivity and voracity. In this study, the use of wheat germinated kamut (Triticum turgidum), quinoa (Chenopodium quinoa) and mung bean (Vigna radiata) as an alternative for the feeding of colonies under laboratory conditions y mango leaves like control, using mini-colonies was evaluated. In the study, mung bean sprouts and kamut wheat were preferred (100% load, 24 hours), compared to quinoa (89 ± 10% load, 24 hours). The determination of the effect of the sprouts on the growth rate of the mini-colonies was evaluated during 8 weeks, showing that the germinated kamut wheat and control treatment generated the best growth rates of fungus in the exponential phase (3.19 and 3.73 g / week respectively) compared with mung beans and quinoa (1 g / wk), supporting the potential of kamut wheat for the maintenance of colonies under laboratory conditions.


2021 ◽  
Author(s):  
Hussan Bano ◽  
Habib‐ur‐Rehman Athar ◽  
Zafar Ullah Zafar ◽  
Hazem M. Kalaji ◽  
Muhammad Ashraf

2020 ◽  
Vol 7 (3) ◽  
pp. 975-983 ◽  
Author(s):  
Yooeun Chae ◽  
Youn-Joo An

This study investigated the transfer of plastic debris in a terrestrial environment from the soil to a plant (the mung bean, Vigna radiata), and then to a consumer (the African giant snail, Achatina fulica).


2003 ◽  
Vol 49 (1) ◽  
pp. 45-50 ◽  
Author(s):  
William F Fett ◽  
Peter H Cooke

Native biofilms present on the adaxial surface of cotyledons of mung bean sprouts (Vigna radiata) were studied by use of scanning electron microscopy. Biofilms were abundant on the cotyledon surfaces and were comprised of rod-shaped bacteria, cocci-shaped bacteria, or yeasts, often with one type of microbe predominant. In contrast to our earlier study of biofilms on green sprouts (alfalfa, clover, broccoli, and sunflower), yeast and cocci were abundant on mung bean. Filamentous fungi were not observed. Sheet-like or fibrillar material (presumably composed of secreted microbial polysaccharides, proteins, lipids, and nucleic acids) fully or partially covered the biofilms. Biofilms up to 5 mm in length were observed, and some biofilms were comprised of more than just a monolayer of microbial cells. Native biofilms on sprout surfaces undoubtedly play an important role in the ecology of plant epiphytic microbes and may also afford protected sites for plant and human bacterial pathogens.Key words: mung bean sprouts, biofilms, native microflora, scanning electron microscopy, food safety.


Sign in / Sign up

Export Citation Format

Share Document