scholarly journals Phosphate solubilizing activity of Pseudomonas fluorescens PSM1 isolated from wheat rhizosphere

2016 ◽  
Vol 8 (1) ◽  
pp. 93-96 ◽  
Author(s):  
Anurag Yadav ◽  
Kusum Yadav ◽  
Anupam Vashistha

A study was designed to screen and analyze the efficient phosphate solubilizing bacteria (PSBs) from wheat rhizosphere. Five biovars of Pseudomonas fluorescens (PSM1, PSM2, PSM3, PSM4 and PSM5) were isolated from wheat rhizosphere and Bacillus megaterium MTCC 8755 procured from microbial type culture collection (MTCC) Chandigarh, India. The P. fluorescens biovar PSM1 was observed to be most efficient phosphate solubilizer. Inoculation of P. fluorescens PSM1 and B. megaterium MTCC 8755, alone and in combination, caused the highest phosphate solubilization at pH 5. At this pH, maximum phosphate solubilization was observed with B. megaterium MTCC 8755 inoculation (8.2 mg mL-1) on sixth day of incubation with P. fluorescens PSM1 (8 mg mL-1) on seventh day of incubation and with dual bacterial treatment (10.5 mg mL-1) on the fourth day of incubation. A correlation coefficient of linear regression equation of phosphate solubilization with pH indicated that pH value of the medium was directly correlated with tricalcium phosphate solubilization. The study will help in choosing soil pH specific PSB inoculant for optimizing plant growth.

2007 ◽  
Vol 62 (1-2) ◽  
pp. 103-110 ◽  
Author(s):  
Md. Tofazzal Islam ◽  
Abhinandan Deora ◽  
Yasuyuki Hashidoko ◽  
Atiqur Rahman ◽  
Toshiaki Ito ◽  
...  

A total of 30 bacteria were isolated from the rhizoplane of rice cv. BR29 cultivated in Mymensingh, Bangladesh and from the seedlings obtained from surface-sterilized seeds of BR29. Upon screening, 6 isolates showed varying levels of phosphate solubilizing activity in both agar plate and broth assays using National Botanical Research Institute’s phosphate medium. The bacterial isolates were identified based on their phenotypic and 16S rRNA genes sequencing data as Acinetobacter sp. BR-12, Klebsiella sp. BR-15, Acinetobacter sp. BR-25, Enterobacter sp. BR-26, Microbacterium sp. BRS-1 and Pseudomonas sp. BRS-2. The BR-25 exhibited highest phosphate solubilizing activity followed by BR-15. They grew rapidly in the liquid medium at pH 5 and 7 but almost no growth occurred at pH 3. The pH value of the culture medium was decreased with bacterial growth suggesting that they might secrete organic acids to solubilize insoluble phosphorus. Scanning electron microscope analysis of two-week-old rice seedlings germinated from seeds previously inoculated with BR-25 and BR-15 revealed dense colonization at the root surfaces presumably using fimbriae on the bacterial cells.


Author(s):  
Zaid Raad Abbas ◽  
Aqeel Mohammed Majeed Al-Ezee ◽  
Sawsan H

This study was conducted to explore the ability of Pseudomonas fluorescens and Bacillus cereus to solubilizing a phosphate in soil for enhancing the planting growth and, its relation with soill characterization. The isolates were identified as P.fluorescens and B. cereus using convential analysis and, its phosphate solubilization ability and sidrophore was shown by the clear zone formation on National Botanical Research Institute���s Phosphate medium. Moreover, Pseudomonas fluorescens isolates (n = 9) and three of B. cereus isolated from agricultural area in Baghdad university, Mustansiriyah university and Diyala bridge. Results displayed that bacterial count were varied in soil samples according to their region, and ranging from 30 to 60 *10 2 CFU/g in Baghdad university soil to 10���20 *10 2 CFU/g in Mustansiriyah university soil, the Baghdad soil macronutrient which included: NH4, NO3, P, and K were, 8.42, 20.53, 19.09, 218.73 respectively, While the physio analysis revealed that the mean of pH was 7.3 and EC was 8.63. on the other hand the micronutrient analysis indicated that the soil samples were included Ca, Fe, Mn, Zn and Cu which gave their mean 5025.9, 8.9, 4.9, 0.5 and 1.5 respectevily. Results revealed that all isolated bacteria (9 isolates of P.fluorescens and three isolates of B. cereus gave ahalo zone which mean their ability to be phosphate solubilizing bacteria at 100%. Results revealed that all isolated bacteria were detected a ability to produce high levels from chelating agents (siderophores)) by P.fluorescens and. B cereus at 100%, when appeared ahalo clear zone. Furthermore, the high levels of phosphate solubilization and siderophore production were grouped in bacterial species isolated from Iraqi soils. might be attributed to many soil factors such as soil nutrient status, soil acidity, water content, organic matter and soil enzyme activities.


2020 ◽  
Vol 1 (2) ◽  
pp. 37-51
Author(s):  
C. E. Oshoma ◽  
S. O. Nwodo ◽  
I. S. Obuekwe

The processing of cassava into value-added products is associated with discharge of effluents which contain substances that have adverse effect on the environment. Remediative activity of indigenous bacteria can be stimulated by supplementing effluents with phosphorus. Rock phosphate (RP) solubilization and enzymatic activities from bacteria on the cassava mill effluents (CME) contaminated soil was investigated. Soil mixed with varying concentrations of CME (0, 100, 200, 300, 400, 500 and 600 ml) and 10 g of RP were analyzed on days 0 and 16. Parameters analyzed were changes in pH, heterotrophic bacteria load, phosphate-solubilizing bacteria load, available phosphorus, acid phosphatase, cellulase and urease concentrations. The results showed that the medium containing 400 ml CME contaminated soil had the highest phosphate-solubilizing bacteria load (12.60 ± 2.08 x 106 cfu/ml), available phosphorus (126.00 ± 4.08 mg/kg), acid phosphatase (9.54 ± 0.51 mgN/g/min), cellulase (15.24 ± 0.81 mg/g/6h) and urease concentration (2.15±0.22 mg/g/2h). The control had the lowest phosphate-solubilizing bacteria load and enzymatic activity. Biostimulation of indigenous bacteria to enhance the degradation of cassava mill effluent-contaminated soil, using rock phosphate, showed promising results. This implies that rock phosphate solubilization by indigenous bacteria in CME-contaminated soils could be important for the remediation and reclamation of contaminated lands.


2019 ◽  
Vol 60 (5) ◽  
pp. 985-995
Author(s):  
Yusur Ramzi ◽  
Hutaf A. A. Alsalim

Sixteen soil samples were collected from wheat, barley and yellow corn rhizosphere in Abu-Ghraib, Aqraqof, Latifieh,Tarmiah, Jadriya and  of Agriculture in Baghdad university/ Baghdad city. The results found nine phosphate solubilizing bacteria (PSB) isolates (Y1, Y2, Y3, Y4, Y5, Y6, Y7, Y8, Y9), formed clear zones on National Botanical Research Institute's (NBRIP) agar. The solubility index (SI) of PSB isolates ranged from 2.00 to 3.66. Y4 have the highest SI (3.66) followed by Y3 and Y6 (3.33). Phosphate solubilization abilities varying from (20.10-39.00 μg.ml-1), Y4 was the highest (39.00 μg.ml-1) followed by Y3 (37.00μg.ml-1). The results of hydrolytic enzymes production showed that almost all nine isolates are able to produce protease and pectinase, while Y1 and Y2 showed negative results in cellulase production. Maximum ability for hydrogen cyanide (HCN) and indole acetic acid (IAA) production were showed byY3 and Y4 isolates. The isolate Y4 was found to be the most efficient isolate, so it was selected identified as Bacillus cereus using biochemical tests confirmed by VITEC 2 compact system. The results of High performance liquid chromatography (HPLC) revealed that Bacillus cereus produce oxalic acid (2.996), citric acid (9.117) and malic acid (3.734). Bacillus cereus (Y4) enhanced the growth of mung bean plants. A significant increase in branches number (12.33), plant length (83.0cm), fresh weight (27.25 g) and dry weight (1.427g) were obtained compared with control treatments. The main objective of this study is to isolate PSB and evaluate their roles in plant growth promotion. The results showed the high phosphate solubilization efficiency of PSB isolates and the identified isolates was found to be good enough for plant growth promoting.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 2560-2578 ◽  
Author(s):  
Ying-Ying Wang ◽  
Pei-Shan Li ◽  
Bi-Xian Zhang ◽  
Yan-Ping Wang ◽  
Jing Meng ◽  
...  

Phosphate-solubilizing microorganisms have been considered as a novel alternative approach to provide phosphate fertilizers that promote plant growth. In this study, three strains were isolated and identified as Penicillium oxalicum FJG21, Penicillium oxalicum FJQ5, and Bacillus subtilis BPM12, with a relatively high phosphate-solubilizing activity. Various phosphate sources were investigated, and Ca3(PO4)2 was identified as the effective phosphate source. Factors governing the phosphate-solubilizing activity of the strains included carbon and nitrogen sources, initial pH, and fermentation time. A high soluble phosphorus content was achieved with 529.0 μg·mL-1, 514.0 μg·mL-1, and 330.7 μg·mL-1 for Penicillium oxalicum FJG21, Penicillium oxalicum FJQ5, and Bacillus subtilis BPM12, respectively. An inverse correlation of the quantity of soluble phosphorus content and the pH value of the medium was observed. In addition, Bacillus subtilis BPM12 displayed a prominent capability of producing indole acetic acid. Penicillium oxalicum FJG21 and Penicillium oxalicum FJQ5 exhibited high cellulase activities. These phosphate-solubilizing microorganisms with good phosphate-solubilizing capability and growth-promoting ability are the promising strains for agricultural utilization.


2010 ◽  
Vol 12 (3,4) ◽  
pp. 231 ◽  
Author(s):  
M. Ogut ◽  
F. Er ◽  
N. Kandemir

<p>Phosphate solubilizing bacteria can be used as soil or seed inoculum to increase soil phosphorus (P) availability for agricultural purposes. There is also a possibility of using these microorganisms to biotechnologically dissolve phosphate ores for the production of phosphorus fertilizers. Twenty-one soil samples were collected along a highway in Turkey to isolate phosphate solubilizing bacteria. A total of 20 phosphate solubilizers were isolated from the rhizosphere of wheat and maize grown in the pots, which contained the collected soil samples. The isolates were distributed among the genera, <em>Acinetobacter</em> (7), <em>Pseudomonas</em> (7), <em>Enterobacter</em> (2), <em>Enterococcus</em> (1), <em>Escherichia</em> (1), <em>Photorhabdus</em> (1), and <em>Bacillus</em> (1) as determined by the 16S rDNA gene sequence analysis. Since the <em>Acinetobacter</em> species were most effective in Pikovskaya’s agar, which contained tricalcium phosphate for the sole P-source, they were further experimented for the phosphate solubilization in batch cultures. The mean phosphorus dissolved in 5 day incubation ranged between 167 and 1022 ppm P. The initial pH of 7.8  dropped below 4.7 in six isolates with a gluconic acid production in the concentrations ranging between 27.5 and 37.5 mM. <em>Acinetobacter</em> isolates have some potential as an inoculum both for soil and biotechnological P-solubilization.</p>


2020 ◽  
Vol 11 ◽  
Author(s):  
Luciana F. Brito ◽  
Marina Gil López ◽  
Lucas Straube ◽  
Luciane M. P. Passaglia ◽  
Volker F. Wendisch

Due to the importance of phosphorus (P) in agriculture, crop inoculation with phosphate-solubilizing bacteria is a relevant subject of study. Paenibacillus sonchi genomovar Riograndensis SBR5 is a promising candidate for crop inoculation, as it can fix nitrogen and excrete ammonium at a remarkably high rate. However, its trait of phosphate solubilization (PS) has not yet been studied in detail. Here, differential gene expression and functional analyses were performed to characterize PS in this bacterium. SBR5 was cultivated with two distinct P sources: NaH2PO4 as soluble phosphate source (SPi) and hydroxyapatite as insoluble phosphate source (IPi). Total RNA of SBR5 cultivated in those two conditions was isolated and sequenced, and bacterial growth and product formation were monitored. In the IPi medium, the expression of 68 genes was upregulated, whereas 100 genes were downregulated. Among those, genes involved in carbon metabolism, including those coding for subunits of 2-oxoglutarate dehydrogenase, were identified. Quantitation of organic acids showed that the production of tricarboxylic acid cycle-derived organic acids was reduced in IPi condition, whereas acetate and gluconate were overproduced. Increased concentrations of proline, trehalose, and glycine betaine revealed active osmoprotection during growth in IPi. The cultivation with hydroxyapatite also caused the reduction in the motility of SBR5 cells as a response to Pi depletion at the beginning of its growth. SBR5 was able to solubilize hydroxyapatite, which suggests that this organism is a promising phosphate-solubilizing bacterium. Our findings are the initial step in the elucidation of the PS process in P. sonchi SBR5 and will be a valuable groundwork for further studies of this organism as a plant growth-promoting rhizobacterium.


Author(s):  
Zaid Raad Abbas ◽  
Aqeel Mohammed Majeed Al-Ezee ◽  
Sawsan H. Authman

This study was conducted to explore the ability of Pseudomonas fluorescens and Bacillus cereus to solubilizing a phosphate in soil for enhancing the planting growth and, its relation with soill characterization. The isolates were identified as P.fluorescens and B. cereus using convential analysis and, its phosphate solubilization ability and sidrophore was shown by the clear zone formation on National Botanical Research Institute’s Phosphate medium. Moreover, Pseudomonas fluorescens isolates (n = 9) and three of B. cereus isolated from agricultural area in Baghdad university, Mustansiriyah university and Diyala bridge. Results displayed that bacterial count were varied in soil samples according to their region,,and ranging from 30 to 60 *10 2 CFU/g in Baghdad university soil to 10—20 *10 2 CFU/g in Mustansiriyah university soil ,.,the Baghdad soil macronutrient which included: NH4 , NO3 ,P,and K were ., 8.42 , 20.53 , 19.09 218.73 respectively, While the physio analysis revealed that the mean of pH was 7.3 and EC was 8.63. on the other hand the micronutrient analysis indicated that the soil samples were included Ca ,Fe ,Mn ,Zn and Cu which gave their mean 5025.9 , 8.9, 4.9, 0.5 and 1.5 respectevily. Results revealed that all isolated bacteria (9 isolates of P.fluorescens and three isolates of B. cereus gave ahalo zone which mean their ability to be phosphate solubilizing bacteria at 100%. Results revealed that all isolated bacteria were detected a ability to produce high levels from chelating agents(( siderophores)) by P.fluorescens and. B cereus at 100%,when appeared ahalo clear zone. Furthermore, the high levels of phosphate solubilization and siderophore production were grouped in bacterial species isolated from Iraqi soils. might be attributed to many soil factors such as soil nutrient status, soil acidity, water content, organic matter and soil enzyme activities.


Sign in / Sign up

Export Citation Format

Share Document