scholarly journals Decolorizing of Malachite Green Dye by Adsorption Using Corn Leaves as Adsorbent Material

2021 ◽  
Vol 27 (2) ◽  
pp. 1-12
Author(s):  
Omar Hisham Fadhel ◽  
Mohammed Yaqob Eisa ◽  
Ziad Rafaa Zair

This paper presents the ability to use cheap adsorbent (corn leaf) for the removal of Malachite Green (MG) dye from its aqueous solution. A batch mode was used to study several factors, dye concentration (50-150) ppm, adsorbent dosage (0.5-2.5) g/L, contact time (1-4) day, pH (2-10), and temperature (30-60)   The results indicated that the removal efficiency increases with the increase of adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature. An SEM device characterized the adsorbent corn leaves. The adsorption's resulting data were in agreement with Freundlich isotherm according to the regression analysis, and the kinetics data followed pseudo-first-order kinetic with a correlation coefficient of 0.9309. The thermodynamic data show that the process is exothermic and reversible. The highest removal of MG was 91%, which gave proof that the corn leaves as adsorbent material have the capability of adsorbing the MG dye for aqueous solutions

Author(s):  
Vijayakumar Govindasamy ◽  
Renganathan Sahadevan ◽  
Sivanesan Subramanian ◽  
Dharmendira Kumar Mahendradas

Perlite was utilized as an adsorbent for the removal of malachite green from their aqueous solution. The effects of the initial dye concentration, contact time, adsorbent dose, pH, and temperature were studied for the adsorption of malachite green in batch mode. The dye adsorption equilibrium was rapidly attained after 40 min of contact time. Adsorbent was characterized by FTIR, XRD and SEM. The Langmuir and Freundlich isotherm described the adsorption data over the concentration range (20 – 100 mg/L). The rate parameters of the intra particle diffusion were calculated and compared to identify the adsorption mechanisms. The thermodynamic parameters such as entropy change, enthalpy change, and energy of adsorption were calculated to know the nature of adsorption. The negative values of energy of adsorption and the positive values of enthalpy change suggested that the adsorption process is spontaneous and exothermic. Kinetic studies showed that the adsorption process obeyed the pseudo first-order kinetic model.


2010 ◽  
Vol 7 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Reza Shokoohi ◽  
Vahid Vatanpoor ◽  
Mansuor Zarrabi ◽  
Akram Vatani

Adsorption process by activated carbon is widely used for removal of dyes. Because of economical limits, activated carbon derived from low cost materials seem to be economical. The aim of this work is preparation of activated carbon from poplar wood and investigation of its ability to removal of (AR18) dye. In this work, we prepared the activated carbon by chemical activation method in electric furnace. In addition we have investigated effect of various parameters such as pH, contact time, dye concentration and adsorbent dosage on dye removal. Langmuir and Freundlich isotherm models have been investigated. Pseudo-first order, pseudo-second order and modified pseudo-first order kinetic models have been used for experimental data. The results showed that removal efficiency was increased with increasing of adsorbent dosage, contact time and decreasing of pH, but with increasing of dye concentration, the removal efficiency was decreased. Adsorption isotherm models showed that Langmuir isotherm model was best fitted onto collected data (r2>0.978). In addition, kinetic models showed that sorption of AR18 onto activated carbon prepared from poplar wood follows the pseudo-first order model (r2>0.9758).


2019 ◽  
Vol 35 (2) ◽  
pp. 591-596 ◽  
Author(s):  
Naveen Chandra Joshi ◽  
Vaishali Rangar ◽  
Ruchi Sati ◽  
Ekta Joshi ◽  
Ajay Singh

Recently, the heavy metals are known for their toxicity to living organisms and natural environment. In the present study, we have removed Ni2+ and Cd2+ ions from synthetically prepared waste water under batch experiments using the waste leaves of Quercus leucotrichophora as low cost adsorbents. The adsorbent was characterized by FTIR and FESEM methods and the batch experiments included contact time, pH, dosage, temperature and concentration. The adsorption of metal ions was found maximum at the optimized conditions such as contact time 60 minutes, dosage 1 g, pH 5 and lower metal ion concentrations. The percentage adsorption at contact time 60 minutes, dosage 1 g and pH 6 was found 50.2, 51.0 and 74.0% for nickel and 38.8, 29.9 and 70.1% for cadmium. The adsorption data under selected batch system have been tested with Langmuir, Freundlich isotherm models, pseudo first order and pseudo second order kinetic models. Langmuir isotherm model and pseudo first order kinetic model were best fitted to adsorption of nickel and cadmium onto waste leaf powder of Quercus leucotrichophora.


2020 ◽  
Vol 3 (6) ◽  
pp. 857-870
Author(s):  
Shagufta Zafar ◽  
Muhammad Imran Khan ◽  
Mushtaq Hussain Lashari ◽  
Majeda Khraisheh ◽  
Fares Almomani ◽  
...  

AbstractThe present study investigates the removal of copper ions (Cu (II)) from aqueous solution using chemically treated rice husk (TRH). The chemical treatment was carried out using NaOH solution and the effect of contact time (tc), adsorbent dosage (Dad), initial Cu (II) concentration ([Cu]i), and temperature (T) on the percentage removals of Cu (II) (%RCu) were investigated. Different analytical techniques (FTIR, SEM, and EDX) were used to confirm the adsorption (ads) of Cu (II) onto the TRH. The ads kinetics was tested against pseudo-first-order (PFO) and pseudo-second-order (PSO) models as well as Langmuir and Freundlich isotherms. Treating RH with NaOH altered the surface and functional groups, and on the surface of RH, the ionic ligands with high electro-attraction to Cu increased and thus improved the removal efficiency. The %RCu decreased by increasing the [Cu]i and increased by increasing the ct, Dad, and T. Up to 97% Cu removal was achieved in ct of 30 min using Dad of 0.3 g [Cu]i of 25 mg L−1 and T = 280 K. The ads of Cu on TRH is endothermic, spontaneous, follows Langmuir isotherms, and exhibited a PSO kinetics. Moreover, the TRH was successfully regenerated and used for further adsorption cycles using 1 M HNO3.


2020 ◽  
Vol 24 (2) ◽  
pp. 329-333
Author(s):  
D.O. Jalija ◽  
A . Uzairu

The objective of this study was to investigate the biosorption of Cu (II) and Ni (II) ions from aqueous solution by calcium alginate beads. The effects of solution pH, contact time and initial metal ion concentration were evaluated. The results showed that maximum Cu (II) removal (93.10%) occurred at pH of 9.0, contact time of 120 minutes and initial ion concentration of 10 mg/L while that of Ni (II) was 94.6%, which was achieved at pH of 8.0, contact time of 120 minutes and initial ion concentration of 10 mg/L. The equilibrium data fitted well to the Langmuir Isotherm indicating that the process is a monolayer adsorption. The coefficients of determination, R2, values for the Langmuir Isotherm were 0.9799 and 0.9822 respectively for Cu (II) and Ni (II) ions. The values of the maximum biosorption capacity, Qo, were 10.79 and 6.25 mgg-1 respectively. The kinetic data also revealed that the sorption process could best be described by the pseudo – second order kinetic model. The R2 values for the pseudo – second order kinetic plots for Cu (II) and Ni (II) were 0.9988 and 0.9969 respectively. These values were higher than those for the pseudo – first order plots. The values of the biosorption capacity qe obtained from the pseudo – second order plots were very close to the experimental values of qe indicating that the biosorption process follows the second order kinetics. This study has therefore shown that calcium alginate beads can be used for the removal of Cu (II) and Ni (II) ions from wastewaters. Keywords: Keywords: Adsorption, Calcium alginate, Isotherm, Langmuir, Pseudo- first order, Pseudo-second order


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Juanjuan Zhao ◽  
Yujiao Sun ◽  
Fachao Wu ◽  
Minjian Shi ◽  
Xurui Liu

Antibiotic residues and antibiotic resistance genes (ARGs) pose a great threat to public health and food security via the horizontal transfer in the food production chain. Oxidative degradation of amoxicillin (AMO) in aqueous solution by thermally activated persulfate (TAP) was investigated. The AMO degradation followed a pseudo-first-order kinetic model at all tested conditions. The pseudo-first-order rate constants of AMO degradation well-fitted the Arrhenius equation when the reaction temperature ranged from 35°C to 60°C, with the apparent activate energy of 126.9 kJ·mol−1. High reaction temperature, high initial persulfate concentration, low pH, high Cl− concentration, and humic acid (HA) concentration increased the AMO degradation efficiency. The EPR test demonstrated that both ·OH and SO4·− were generated in the TAP system, and the radical scavenging test identified that the predominant reactive radical species were SO4·− in aqueous solution without adjusting the solution pH. In groundwater and drinking water, AMO degradation suggested that TAP could be a reliable technology for water remediation contaminated by AMO in practice.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
I. Osasona ◽  
O. O. Ajayi ◽  
A. O. Adebayo

The feasibility of using powdered cow hooves (CH) for removing Ni2+ from aqueous solution was investigated through batch studies. The study was conducted to determine the effect of pH, adsorbent dosage, contact time, adsorbent particle size, and temperature on the adsorption capacity of CH. Equilibrium studies were conducted using initial concentration of Ni2+ ranging from 15 to 100 mgL−1 at 208, 308, and 318 K, respectively. The results of our investigation at room temperature indicated that maximum adsorption of Ni2+ occurred at pH 7 and contact time of 20 minutes. The thermodynamics of the adsorption of Ni2+ onto CH showed that the process was spontaneous and endothermic. Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models were used to quantitatively analysed the equilibrium data. The equilibrium data were best fitted by Freundlich isotherm model, while the adsorption kinetics was well described by pseudo-second-order kinetic equation. The mean adsorption energy obtained from the D-R isotherm revealed that the adsorption process was dominated by physical adsorption. Powdered cow hooves could be utilized as a low-cost adsorbent at room temperature under the conditions of pH 7 and a contact time of 20 minutes for the removal of Ni(II) from aqueous solution.


2021 ◽  
Author(s):  
Thi-Thuy Luu ◽  
Duy-Khoi Nguyen ◽  
Tu Thi Phuong Nguyen ◽  
Thien-Hoang Ho ◽  
Van-Phuc Dinh ◽  
...  

Abstract To remove Ni(II) ions from an aqueous solution, researchers used red mud modified by chitosan (RM/CS) material as a new adsorbent. According to the findings, the surface area of red mud is nearly doubled after being treated with chitosan, from 68.6 m2/g to 105.7 m2/g. The effects of pH solution, contact time, and material dosage on the Ni(II) uptake were examined. In comparison with the pseudo-first-order and pseudo-second-order models, the intra-diffusion model was the most suitable kinetic model for the Ni(II) removal. Besides, the three-parameter Sips model was used to predict the Ni(II) adsorption of RM/CS from aqueous solution. Furthermore, the Langmuir maximum Ni(II) uptake capacity of this material was 31.66 mg/g at 323K, which was higher than red mud and several other natural materials. Notably, thermodynamic investigations demonstrated that Ni(II) adsorption on RM/CS is both exothermic and physic.


2012 ◽  
Vol 573-574 ◽  
pp. 86-91
Author(s):  
Xue Feng Liang ◽  
Wan Guo Hou ◽  
Ying Ming Xu ◽  
Lin Wang ◽  
Yue Bing Sun

Hydrotalcite-like compounds containing Mg2+, Al3+ and Fe3+ with a constant M2+/M3+ ratio but varying Al3+/Fe3+ ratios have been prepared. The effects of iron contents on the structural and sorption of Pb2+ by Mg-Al-Fe HTlc samples were investigated. The maximum sorption amounts were about 88-201 mg/g for Mg-Al-Fe HTlc samples. The sorption isotherm and kinetic processes can be described with Freundlich isotherm and pseudo first order kinetic model, respectively. The sorption amounts and rate increase with the increase of iron contents in HTlc samples. The sorption mechanism of Pb2+ on Mg-Al-Fe HTlcs may be the surface-induced precipitation and chemical binding adsorption.


2015 ◽  
Vol 73 (4) ◽  
pp. 881-889 ◽  
Author(s):  
L. Khezami ◽  
Kamal K. Taha ◽  
Imed Ghiloufi ◽  
Lassaad El Mir

Herein the degradation of malachite green (MG) dye from aqueous medium by vanadium doped zinc oxide (ZnO:V3%) nanopowder was investigated. The specific surface area and pore volume of the nanopowder was characterized by nitrogen adsorption method. Batch experimental procedures were conducted to investigate the adsorption and photocatalytic degradation of MG dye. Adsorption kinetics investigations were performed by varying the amount of the catalyst and the initial dye concentrations. Adsorption and photocatalytic degradation data were modeled using the Lagergren pseudo-first-order and second-order kinetic equation. The results showed that the ZnO:V3% nanopowder was particularly effective for the removal of MG and data were found to comply with Lagergreen pseudo-first-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document