Adsorption and photocatalytic degradation of malachite green by vanadium doped zinc oxide nanoparticles

2015 ◽  
Vol 73 (4) ◽  
pp. 881-889 ◽  
Author(s):  
L. Khezami ◽  
Kamal K. Taha ◽  
Imed Ghiloufi ◽  
Lassaad El Mir

Herein the degradation of malachite green (MG) dye from aqueous medium by vanadium doped zinc oxide (ZnO:V3%) nanopowder was investigated. The specific surface area and pore volume of the nanopowder was characterized by nitrogen adsorption method. Batch experimental procedures were conducted to investigate the adsorption and photocatalytic degradation of MG dye. Adsorption kinetics investigations were performed by varying the amount of the catalyst and the initial dye concentrations. Adsorption and photocatalytic degradation data were modeled using the Lagergren pseudo-first-order and second-order kinetic equation. The results showed that the ZnO:V3% nanopowder was particularly effective for the removal of MG and data were found to comply with Lagergreen pseudo-first-order kinetic model.

2017 ◽  
Vol 14 (3) ◽  
pp. 582-587
Author(s):  
Baghdad Science Journal

In this work, the photocatalytic degradation of indigo carmine (IC) using zinc oxide suspension was studied. The effect of influential parameters such as initial indigo carmine concentration and catalyst loading were studied with the effect of Vis irradiation in the presence of reused ZnO was also investigated. The increased in initial dye concentration decreased the photodegradation and the increased catalyst loading increased the degradation percentage and the reused-ZnO exhibits lower photocatalytic activity than the ZnO catalyst. It has been found that the photocatalytic degradation of indigo carmine obeyed the pseudo-first-order kinetic reaction in presence of zinc oxide. This was found from plotting the relationship between ln (C0/Ct) and irradiation the rate constant of the process.UV- spectrophotometer was used to study the indigo carmine photodegradation.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Md. Murshed Bhuyan ◽  
Nirmal Chandra Dafader ◽  
Kazuhiro Hara ◽  
Hirotaka Okabe ◽  
Yoshiki Hidaka ◽  
...  

Several kinds of acrylic-acid-grafted-starch (starch/AAc) hydrogels were prepared at room temperature (27°C) by applying 5, 10, 15, 20, and 25 kGy of gamma radiation to 15% AAc aqueous solutions containing 5, 7.5, and 15% of starch. With increment of the radiation dose, gel fraction became higher and attained the maximum (96.5%) at 15 kGy, above which the fraction got lowered. On the other hand, the gel fraction monotonically increased with the starch content. Swelling ratios were lower for the starch/AAc hydrogels prepared with higher gamma-ray doses and so with larger starch contents. Significant promotions of the swelling ratios were demonstrated by hydrolysis with NaOH:13632±10%for 15 kGy radiation-dosed [5% starch/15% AAc] hydrogel, while the maximum swelling ratio was ~200% for those without the treatment. The authors further investigated the availability of the starch/AAc hydrogel as an adsorbent recovering dye waste from the industrial effluents by adopting methylene blue as a model material; the hydrogels showed high dye-capturing coefficients which increase with the starch ratio. The optimum dye adsorption was found to be 576 mg per g of the hydrogel having 7.5 starch and 15% AAc composition. Two kinetic models, (i) pseudo-first-order and (ii) pseudo-second-order kinetic models, were applied to test the experimental data. The latter provided the best correlation of the experimental data compared to the pseudo-first-order model.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1403
Author(s):  
Kashma Sharma ◽  
Shreya Sharma ◽  
Vipasha Sharma ◽  
Pawan Kumar Mishra ◽  
Adam Ekielski ◽  
...  

The present work demonstrates the development of hydroxyapatite (HA)/gold (Au) nanocomposites to increase the adsorption of methylene blue (MB) dye from the wastewater. HA nanopowder was prepared via a wet chemical precipitation method by means of Ca(OH)2 and H3PO4 as starting materials. The biosynthesis of gold nanoparticles (AuNPs) has been reported for the first time by using the plant extract of Acrocarpus fraxinifolius. Finally, the as-prepared HA nanopowder was mixed with an optimized AuNPs solution to produce HA/Au nanocomposite. The prepared HA/Au nanocomposite was studied by using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and Scanning Electron Microscopy (SEM) with Energy Dispersive X-Ray Analysis (EDX) analysis. Adsorption studies were executed by batch experiments on the synthesized composite. The effect of the amount of adsorbent, pH, dye concentration and temperature was studied. Pseudo-first-order and pseudo-second-order models were used to fit the kinetic data and the kinetic modeling results reflected that the experimental data is perfectly matched with the pseudo-first-order kinetic model. The dye adsorbed waste materials have also been investigated against Pseudomonas aeruginosa, Micrococcus luteus, and Staphylococcus aureus bacteria by the agar well diffusion method. The inhibition zones of dye adsorbed samples are more or less the same as compared to as-prepared samples. The results so obtained indicates the suitability of the synthesized sample to be exploited as an adsorbent for effective treatment of MB dye from wastewater and dye adsorbed waste as an effective antibacterial agent from an economic point of view.


Inorganics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 52
Author(s):  
Ani Iryani ◽  
Ahmad Masudi ◽  
Ade I. Rozafia ◽  
Djoko Hartanto ◽  
Mardi Santoso ◽  
...  

A hierarchical zeolite ZSM-5 with micro and meso-pore was prepared by optimising the most affecting parameter in sequence of desilication and dealumination. The physicochemical properties of zeolite were characterised with XRD, nitrogen adsorption–desorption, FTIR and SEM. The potential of this zeolite for decolorisation of CR, RY, MB, RhB, DB-1 and DB-14 was evaluated with adsorption isotherm, thermodynamics, kinetics, and influencing parameter for adsorption. The unique modification of ZSM-5 resulted in lower crystallinity, easier porosity control, rich terminal silanol and unbridged silanol groups which assisted in higher adsorption capacity. The adsorption capacity of the optimum ZSM-5 was 323, 435, 589, 625, 61 and 244 mg/g for CR, RY, MB, RhB, DB-1 and DB-14, respectively. The dye adsorption progressed through pseudo-first-order kinetic and close to the Langmuir model. The adsorption mechanism is proposed mainly through interaction between deprotonated silanol site and the electron-rich dye site.


Author(s):  
Maureen O. Chijioke-Okere ◽  
Nnaemeka John Okorocha ◽  
Basil N. Anukam ◽  
Emeka E. Oguzie

The potential of Calcinated and uncalcinated zinc oxide as effective Photocatatlyst for the degradation of malachite green dye, MG from aqueous medium using UV light has been identified. The photocatalysts were characterized using scanning electron microscope, SEM and x-ray diffraction, XRD. The SEM investigations of the calcinated ZnO revealed highly dispersed nanomaterials and the particles were of nanometer size in agreement with the XRD result. The uncalcinated zinc oxide, ZnO revealed some pronounced nanoparticles. The degradation of MG by the photocatalyst was found to be influenced by adsorbent loading and irradiating time. The optimum degradation was obtained at 0.5g catalyst loading of both calcinated and uncalcinated zinc oxide which is 98.48% and 96.31 % respectively at 150 minutes. The degradation kinetics conformed to the pseudo-first-order kinetic model. The present study showed that calcinated and uncalcinated zinc oxide ZnO can be effectively used as efficient photocatalyst for the degradation of Malachite green dyes from aqueous solutions and effluents.


2021 ◽  
Vol 27 (2) ◽  
pp. 1-12
Author(s):  
Omar Hisham Fadhel ◽  
Mohammed Yaqob Eisa ◽  
Ziad Rafaa Zair

This paper presents the ability to use cheap adsorbent (corn leaf) for the removal of Malachite Green (MG) dye from its aqueous solution. A batch mode was used to study several factors, dye concentration (50-150) ppm, adsorbent dosage (0.5-2.5) g/L, contact time (1-4) day, pH (2-10), and temperature (30-60)   The results indicated that the removal efficiency increases with the increase of adsorbent dosage and contact time, while inversely proportional to the increase in pH and temperature. An SEM device characterized the adsorbent corn leaves. The adsorption's resulting data were in agreement with Freundlich isotherm according to the regression analysis, and the kinetics data followed pseudo-first-order kinetic with a correlation coefficient of 0.9309. The thermodynamic data show that the process is exothermic and reversible. The highest removal of MG was 91%, which gave proof that the corn leaves as adsorbent material have the capability of adsorbing the MG dye for aqueous solutions


2011 ◽  
Vol 671 ◽  
pp. 165-186 ◽  
Author(s):  
A. Xavier ◽  
D. Usha ◽  
J. Gandhi Rajan ◽  
M. Malarvizhi

Malachite Green is an organic compound that is used as a dyestuff for the materials like silk, leather and paper. As a part of removal of malachite green dye from textile and leather industrial wastes, using activated carbon as adsorbents namely, commercial activated carbon (CAC), rose apple carbon (RAC), coconut shell carbon (CSC) and saw dust carbon (SDC). The percentage of malachite green adsorbed increases with decrease in initial concentration and particle size of adsorbent and increased with increase in contact time, temperature and dose of adsorbent. The pH is highly sensitive for dye adsorption process. The adsorption process followed first order kinetics and the adsorption data with Freundlich and Langmuir isotherm models. The first order kinetic equations like Natarajan Khalaf, Lagergren, Bhattacharya and Venkobhachar and intra particle diffusion were found to be applicable. A comparative account of the adsorption capacity of various carbons has been made. These activated carbons are alternative to commercial AC for the removal dyes in General and MG is particular. These results are reported highly efficient and effective and low cost adsorbent for the MG. The thermodynamics parameters are also studied and it obeys spontaneous process. The results are confirmed by before and after adsorption process with the help of the following instrumental techniques viz., FT-IR, UV-Visible Spectrophotometer and SEM photos.


1991 ◽  
Vol 274 (2) ◽  
pp. 581-585 ◽  
Author(s):  
S C Kivatinitz ◽  
A Miglio ◽  
R Ghidoni

The fate of exogenous ganglioside GM1 labelled in the sphingosine moiety, [Sph-3H]GM1, administered as a pulse, in the isolated perfused rat liver was investigated. When a non-recirculating protocol was employed, the amount of radioactivity in the liver and perfusates was found to be dependent on the presence of BSA in the perfusion liquid and on the time elapsed after the administration of the ganglioside. When BSA was added to the perfusion liquid, less radioactivity was found in the liver and more in the perfusate at each time tested, for up to 1 h. The recovery of radioactivity in the perfusates followed a complex course which can be described by three pseudo-first-order kinetic constants. The constants, in order of decreasing velocity, are interpreted as: (a) the dilution of the labelled GM1 by the constant influx of perfusion liquid; (b) the washing off of GM1 loosely bound to the surface of liver cells; (c) the release of gangliosides from the liver. Process (b) was found to be faster in the presence of BSA, probably owing to the ability of BSA to bind gangliosides. The [Sph-3H]GM1 in the liver underwent metabolism, leading to the appearance of products of anabolic (GD1a, GD1b) and catabolic (GM2, GM3) origin; GD1a appeared before GM2 and GM3 but, at times longer than 10 min, GM2 and GM3 showed more radioactivity than GD1a. At a given time the distribution of the radioactivity in the perfusates was quite different from that of the liver. In fact, after 60 min GD1a was the only metabolite present in any amount, the other being GM3, the quantity of which was small. This indicates that the liver is able to release newly synthesized gangliosides quite specifically. When a recirculating protocol was used, there were more catabolites and less GD1a than with the non-recirculating protocol. A possible regulatory role of ganglioside re-internalization on their own metabolism in the liver is postulated.


2018 ◽  
Vol 38 ◽  
pp. 02014
Author(s):  
Yu Zhang ◽  
Jian Gu ◽  
Mengqi Zhang

The wool-ball-like TiO2 microspheres on carbon fabric (TiO2-CF) and FTO substrates (TiO2-FTO) have been synthesized by a facile hydrothermal method in alkali environment, using commercial TiO2 (P25) as precursors. The XRD results indicate that the as-prepared TiO2 have good crystallinity. And the SEM images show that the wool-ball-like TiO2 microspheres with a diameter of 2-3 μm are composed of TiO2 nanowires, which have a diameter of ~50 nm. The photocatalytic behavior of the wool-ball-like TiO2 microspheres, TiO2-CF and TiO2-FTO under ultraviolet light was investigated by a pseudo first-order kinetic model, using methyl orange (MO) as pollutant. The wool-ball-like TiO2 microspheres obtained a degradation rate constant (Kap) of 6.91×10-3 min-1 . The Kap values of TiO2-FTO and TiO2-CF reach 13.97×10-3 min-1 and 11.80×10-3 min-1, which are 2.0 and 1.7 times higher than that of pristine wool-ball-like TiO2 microspheres due to the “sum effect” between TiO2 and substrates. This study offers a facile hydrothermal method to prepare wool-ball-like TiO2 microspheres on CF and FTO substrates, which will improve the recyclability of phtocatalysts and can be extended to other fields.


2018 ◽  
Vol 5 (4) ◽  
pp. 171457 ◽  
Author(s):  
Zhigang Yi ◽  
Juan Wang ◽  
Tao Jiang ◽  
Qiong Tang ◽  
Ying Cheng

In this study, photocatalytic experiments of 20 mg l −1 sulfamethazine (SMN) in aqueous solution containing ZnO with different morphologies, tetra-needle-like ZnO (T-ZnO), flower-like ZnO (F-ZnO) and nanoparticles ZnO (P-ZnO), were performed. The results indicated that photocatalytic degradation of SMN was effective and followed the pseudo-first-order reaction, but the degree of SMN mineralization showed obvious differences using ZnO with different shapes. After 12 h irradiation, 86%, 71% and 50% of the initial total organic carbon was eliminated in SMN suspension containing T-ZnO, F-ZnO and P-ZnO, respectively. The release ratio of sulfur was close to 100% in the presence of T-ZnO, but reached to 86% and 67% in the presence of F-ZnO and P-ZnO, respectively. The release ratio of nitrogen was about 76%, 63% and 40% using T-ZnO, F-ZnO and P-ZnO as photocatalyst, respectively. The morphology of ZnO played an important role in determining its catalytic activity. Seven intermediates were observed and identified in the UV/T-ZnO reaction system by LC-MS/MS analysis, and a possible degradation pathway was proposed.


Sign in / Sign up

Export Citation Format

Share Document