Gamma-scanner for control of radiochemical purity of medical isotopes

2015 ◽  
Vol 50 (3) ◽  
pp. 288-291
Author(s):  
G. S. Harutyunyan
1981 ◽  
Vol 20 (06) ◽  
pp. 279-282 ◽  
Author(s):  
D. Konstantinovska ◽  
K. Milivojević ◽  
J. Bzenić ◽  
V. Jovanović

Labelling yield and radiochemical purity, higher than 95%, of 99mTc-colloid preparations were determined by using the paper chromatography method. Less than 3% of labelled citric acid, added to the preparation as a buffer solution, has been found in 99mTc-sulphur colloid. High radiochemical purity and optimum size of colloid particles has also been proved by biodistribution studies on experimental animals. The analysis performed has shown that more than 50% of 99mTc-colloid preparations excreted by urine is 99mTcO–, the remaining past 50% being protein bound 99mTc. Biological half-time of excretion of the fast phase is the same for both preparations, i.e. 10 min, while for the slow component it is 120 min in 99mTc-S-colloid and 160 min in 99mTc-Sn colloid.


1979 ◽  
Vol 18 (01) ◽  
pp. 40-45 ◽  
Author(s):  
M. Malešević ◽  
Lj. Stefanović ◽  
N. Vanlić-Razumenić

The renal radiopharmaceutical preparations 99mTc-DMS and 99mTc-GH were examined chemically, biologically and clinically. Both preparations are of high radiochemical purity. The biodistribution of both preparations was examined in experimental animals at different time intervals, from 15 min to 4 hr; the percentage of incorporation of 99mTc-DMS into kidneys is much higher (29.4% to 52.0%) than that of 99mTc-GH (12.80% to 22.20%). Both preparations accumulate to a greater extent in the renal cortex than in the medulla.The most suitable time for renal scintigraphy for "mTc-DMS is 90-150 min while for 99mTc-GH it is 60-90 min. It is concluded that 99mTc-DMS is more suitable for static scintigrams on the scanner and 99mTc-GH for dynamic studies with the gamma camera.


2020 ◽  
Vol 20 (14) ◽  
pp. 1695-1703
Author(s):  
Arezou Masteri Farahani ◽  
Fariba Maleki ◽  
Nourollah Sadeghzadeh ◽  
Saeid Abediankenari ◽  
Seyed Mohammad Abedi ◽  
...  

Introduction: Prostate cancer is a serious threat to men’s health so it is necessary to develop technics for early detection of this malignancy. The purpose of this research was the evaluation of a new99mTc-labeled GnRH analogue as an imaging probe for tumor targeting of prostate cancer. Methods: 99mTc-labeled-DLys6-GnRH analogue was prepared based on HYNIC as a chelating agent and tricine/ EDDA as coligands for labeling with 99mTc. HYNIC was coupled to epsilon amino group of DLys6 through aminobutyric acid (GABA) as a linker. Radiochemical purity and stability in normal saline and serum, were determined by TLC and HPLC methods. Furthermore, calculation of protein-binding and partition coefficient constant were carried out for 99mTc labeled peptide. The cellular experiments including receptor binding specificity and affinity were studied using three prostate cancer cell lines LN-CaP, DU-145 and PC-3. Finally, the animal assessment and SPECT imaging of radiolabeled GnRH analogue were evaluated on normal mice and nude mice bearing LN-CaP tumor. Results: The GnRH conjugate was labeled with high radiochemical purity (~97%). The radiolabeled peptide showed efficient stability in the presence of normal saline and human serum. The in vitro cellular assays on three prostate cancer cell lines indicated that the radiotracer was bound to LN-CaP cells with higher affinity compared to DU-145 and PC-3 cells. The Kd values of 99mTc- HYNIC (tricine/ EDDA)-Gaba-D-Lys6GnRH were 89.39±26.71, 93.57±30.49 and107.3±18.82 in LN-CaP, PC-3 and DU-145 cells respectively. The biodistribution studies in normal mice and LN-CaP tumor-bearing nude mice showed similar results including rapid blood clearance and low radioactivity accumulation in non-target organs. High kidney uptake proved that the main excretion route of radiopeptide was through the urinary system. The tumor uptake was 1.72±0.45 %ID/g at 1h p.i. decreasing to 0.70±0.06%ID/g at 4h p.i. for 99mTc-HYNIC-Gaba-D-Lys6GnRH. The maximum tumor/ muscle ratio was 2.30 at 1h p.i. Pre-saturation of receptor using an excess of unlabeled peptide revealed that the tumor uptake was receptor mediated. The results of the SPECT image of LN-CaP tumor were in agreement with the biodistribution data. Conclusion: Based on this study, we suggest LN-CaP as a favorable cell line for in vivo studies on GnRH analogues. Moreover, this report shows that 99mTc-HYNIC (tricine/EDDA)-Gaba-D-Lys6GnRH may be a suitable candidate for further evaluation of prostate cancer.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
M. H. Sanad ◽  
A. B. Farag ◽  
S. F. A. Rizvi

Abstract This study presents development and characterization of a radiotracer, [125I]iodonefiracetam ([125I]iodoNEF). Labeling with high yield and radiochemical purity was achieved through the formation of a [125I]iodoNEF radiotracer after investigating many factors like oxidizing agent content (chloramines-T (Ch-T)), substrate amount (Nefiracetam (NEF)), pH of reaction mixture, reaction time and temperature. Nefiracetam (NEF) is known as nootropic agent, acting as N-methyl-d-aspartic acid receptor ligand (NMDA). The radiolabeled compound was stable, and exhibited the logarithm of the partition coefficient (log p) value of [125I]iodonefiracetam as 1.85 (lipophilic). Biodistribution studies in normal mice confirmed the suitability of the [125I]iodoNEF radiotracer as a novel tracer for brain imaging. High uptake of 8.61 ± 0.14 percent injected dose/g organ was observed in mice


2021 ◽  
Vol 14 (7) ◽  
pp. 599
Author(s):  
Valentina Di Iorio ◽  
Stefano Boschi ◽  
Anna Sarnelli ◽  
Cristina Cuni ◽  
David Bianchini ◽  
...  

Radiopharmaceuticals targeting the prostate-specific membrane antigen (PSMA) has become the gold standard for PET imaging of prostate cancer. [68Ga]Ga-PSMA-11 has been the forerunner but a [18F]F-PSMA ligand has been developed because of the intrinsic advantages of Fluorine-18. Fluorine-18 labelled compounds are usually prepared in centers with an on-site cyclotron. Since our center has not an on-site cyclotron, we decided to verify the feasibility of producing the experimental 18F-labelled radiopharmaceutical [18F]F-PSMA-1007 with [18F]F- from different external suppliers. A quality agreement has been signed with two different suppliers, and a well-established and correctly implemented quality assurance protocol has been followed. The [18F]F- was produced with cyclotrons, on Nb target, but with different beam energy and current. Extensive validation of the [18F]F-PSMA-1007 synthesis process has been performed. The aim of this paper was the description of all the quality documentation which allowed the submission and approval of the Investigational Medicinal Product Dossier (IMPD) to the Competent Authority, addressing the quality problems due to different external suppliers. The result indicates that no significant differences have been found between the [18F]F- from the two suppliers in terms of radionuclidic and radiochemical purity and [18F]F- impacted neither the radiochemical yield of the labelling reaction nor the quality control parameters of the IMP [18F]F-PSMA-1007. These results prove how a correct quality assurance system can overcome some Regulatory Authorities issue that may represent an obstacle to the clinical use of F-18-labelled radiopharmaceuticals without an on-site cyclotron


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nashaat Turkman ◽  
Daxing Liu ◽  
Isabella Pirola

AbstractSmall molecules that contain the (TFMO) moiety were reported to specifically inhibit the class-IIa histone deacetylases (HDACs), an important target in cancer and the disorders of the central nervous system (CNS). However, radiolabeling methods to incorporate the [18F]fluoride into the TFMO moiety are lacking. Herein, we report a novel late-stage incorporation of [18F]fluoride into the TFMO moiety in a single radiochemical step. In this approach the bromodifluoromethyl-1,2,4-oxadiazole was converted into [18F]TFMO via no-carrier-added bromine-[18F]fluoride exchange in a single step, thus producing the PET tracers with acceptable radiochemical yield (3–5%), high radiochemical purity (> 98%) and moderate molar activity of 0.33–0.49 GBq/umol (8.9–13.4 mCi/umol). We validated the utility of the novel radiochemical design by the radiosynthesis of [18F]TMP195, which is a known TFMO containing potent inhibitor of class-IIa HDACs.


2021 ◽  
Vol 14 (3) ◽  
pp. 188
Author(s):  
Ines Katzschmann ◽  
Heike Marx ◽  
Klaus Kopka ◽  
Ute Hennrich

For the PET imaging of prostate cancer, radiotracers targeting the prostate-specific membrane antigen (PSMA) are nowadays used in clinical practice. [18F]PSMA-1007, a radiopharmaceutical labeled with fluorine-18, has excellent properties for the detection of prostate cancer. Essential for the human use of a radiotracer is its production and quality control under GMP-compliance. For this purpose, all analytical methods have to be validated. [18F]PSMA-1007 is easily radiosynthesized in a one-step procedure and isolated using solid phase extraction (SPE) cartridges followed by formulation of a buffered injection solution and for the determination of its chemical and radiochemical purity a robust, fast and reliable quality control method using radio-HPLC is necessary. After development and optimizations overcoming problems in reproducibility, the here described radio-HPLC method fulfills all acceptance criteria—for e.g., specificity, linearity, and accuracy—and is therefore well suited for the routine quality control of [18F]PSMA-1007 before release of the radiopharmaceutical. Recently a European Pharmacopeia monograph for [18F]PSMA-1007 was published suggesting a different radio-HPLC method for the determination of its chemical and radiochemical purity. Since the here described method has certain advantages, not least of all easier technical implementation, it can be an attractive alternative to the monograph method. The here described method was successfully validated on several radio-HPLC systems in our lab and used for the analysis of more than 60 batches of [18F]PSMA-1007. Using this method, the chemical and radiochemical purity of [18F]PSMA-1007 can routinely be evaluated assuring patient safety.


Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 918
Author(s):  
Marco Verona ◽  
Sara Rubagotti ◽  
Stefania Croci ◽  
Sophia Sarpaki ◽  
Francesca Borgna ◽  
...  

The cholecystokinin-2 receptor (CCK-2R) is overexpressed in several human cancers but displays limited expression in normal tissues. For this reason, it is a suitable target for developing specific radiotracers. In this study, a nastorazepide-based ligand functionalized with a 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) chelator (IP-001) was synthesized and labelled with indium-111. The radiolabeling process yielded >95% with a molar activity of 10 MBq/nmol and a radiochemical purity of >98%. Stability studies have shown a remarkable resistance to degradation (>93%) within 120 h of incubation in human blood. The in vitro uptake of [111In]In-IP-001 was assessed for up to 24 h on a high CCK-2R-expressing tumor cell line (A549) showing maximal accumulation after 4 h of incubation. Biodistribution and single photon emission tomography (SPECT)/CT imaging were evaluated on BALB/c nude mice bearing A549 xenograft tumors. Implanted tumors could be clearly visualized after only 4 h post injection (2.36 ± 0.26% ID/cc), although a high amount of radiotracer was also found in the liver, kidneys, and spleen (8.25 ± 2.21%, 6.99 ± 0.97%, and 3.88 ± 0.36% ID/cc, respectively). Clearance was slow by both hepatobiliary and renal excretion. Tumor retention persisted for up to 24 h, with the tumor to organs ratio increasing over-time and ending with a tumor uptake (1.52 ± 0.71% ID/cc) comparable to liver and kidneys.


Atomic Energy ◽  
1958 ◽  
Vol 4 (2) ◽  
pp. 272-276
Author(s):  
V. I. Baranov ◽  
K. B. Zaborenko ◽  
V. I. Korobkov

Sign in / Sign up

Export Citation Format

Share Document