Effect of Thin High Clouds and Aerosol Layers on the Heating and Dissipation of Low-level Clouds in the Arctic

2021 ◽  
Vol 46 (4) ◽  
pp. 245-255
Author(s):  
Yu. E. Belikov ◽  
S. V. Dyshlevsky ◽  
A. Yu. Repin
Keyword(s):  
2021 ◽  
pp. 53-68
Author(s):  
Yu. E. Belikov ◽  
◽  
S. V. Dyshlevsky ◽  
A. Yu. Repin ◽  
◽  
...  

Based on the radiative transfer simulation and analysis of observational data on cloudiness, temperature, and humidity in the Arctic atmosphere in the years of the increased ice melting, a hypothesis is proposed on the effect of thin high clouds and aerosol layers on the heating and dissipation of low-level clouds in the Arctic. Along with the effect of thin high scattering layers on the transmission of solar radiation by tropospheric clouds, the dissipation of low-level clouds in the years of the increased ice melting can be one of the main mechanisms of the natural warming in the Arctic.


2021 ◽  
pp. 118537
Author(s):  
Lei Zhang ◽  
Jian Li ◽  
Minghu Ding ◽  
Jianping Guo ◽  
Lingen Bian ◽  
...  

Author(s):  
Anna Borisovna Nikolaeva ◽  

The Arctic is the richest and at the same time the most difficult region to develop in the world. Exploration and exploitation of its deposits are inevitable for Russia and mankind as a whole. The Arctic region is characterized by extreme nature-climatic conditions, with a rather low level of economic development and remoteness from industrial centers, a low level or lack of any infrastructure as well as by instability of the ecological system to anthropogenic impact and a long recovery period. Since the potential of the resources currently being developed will be exhausted within several decades, and the world economies are not yet ready for a full transition to alternative energy resources, it is necessary to search for and develop new hydrocarbon reserves that determines the relevance of the study.The aim of the study is to identify the main problems arising when exploiting hydrocarbons in the Arctic region. The set of problems identified predetermines an integrated approach to their solutions. In this case, it is about reforming legislation, increasing funding, and attracting new participants in the international cooperation. Since the export of oil and gas is traditional for the Russian Federation, exploitation of hydrocarbons in the region is a prerequisite for the further economic development of the country. A state policy aimed at development and improvement of new technologies, reducing environmental risks, and deep scientific research of the Arctic, is needed. The method of expert assessment was used, which is applied for solving complex tasks with lack of information, and impossibility of mathematical formalization of the solution process. The basis for the application of this method is the possibility and ability of experts to assess the importance of the problem under study and development prospects for a certain research direction. The expert assessments were highlighted during the study and analysis of the literature.


2016 ◽  
Author(s):  
Julia Burkart ◽  
Megan D. Willis ◽  
Heiko Bozem ◽  
Jennie L. Thomas ◽  
Kathy Law ◽  
...  

Abstract. The Arctic is extremely sensitive to climate change. Shrinking sea ice extent increases the area covered by open ocean during Arctic summer, which impacts the surface albedo and aerosol and cloud properties among many things. In this context extensive aerosol measurements (aerosol composition, particle number and size, cloud condensation nuclei, and trace gases) were made during 11 flights of the NETCARE July, 2014 airborne campaign conducted from Resolute Bay, Nunavut (74N, 94W). Flights routinely included vertical profiles from about 60 to 3000 m a.g.l. as well as several low-level horizontal transects over open ocean, fast ice, melt ponds, and polynyas. Here we discuss the vertical distribution of ultrafine particles (UFP, particle diameter, dp: 5–20 nm), size distributions of larger particles (dp: 20 nm to 1 μm), and cloud condensation nuclei (CCN, supersaturation = 0.6 %) in relation to meteorological conditions and underlying surfaces. UFPs were observed predominantly within the boundary layer, where concentrations were often several hundreds to a few thousand particles per cubic centimeter. Occasionally, particle concentrations below 10 cm−3 were found. The highest UFP concentrations were observed above open ocean and at the top of low-level clouds, whereas numbers over ice-covered regions were substantially lower. Overall, UFP formation events were frequent in a clean boundary layer with a low condensation sink. In a few cases this ultrafine mode extended to sizes larger than 40 nm, suggesting that these UFP can grow into a size range where they can impact clouds and therefore climate.


2021 ◽  
Author(s):  
Jan Chylik ◽  
Roel Neggers

<p>The proper representation of Arctic mixed-phased clouds remains a challenge in both weather forecast and climate models. Amongst the contributing factors is the complexity of turbulent properties of clouds. While the effect of evaporating hydrometeors on turbulent properties of the boundary layer has been identified in other latitudes, the extent of similar studies in the Arctic has been so far limited.</p><p>Our study focus on the impact of heat release from mixed-phase microphysical processes on the turbulent properties of the convective low-level clouds in the Arctic. We  employ high-resolution simulations, properly constrained by relevant measurements.<br>Semi-idealised model cases are based on convective clouds observed during the recent campaign in the Arctic: ACLOUD, which took place May--June 2017 over Fram Strait. The simulations are performed in Dutch Atmospheric Large Eddy Simulation (DALES) with double-moment mixed-phase microphysics scheme of Seifert & Beheng.</p><p>The results indicate an enhancement of boundary layer turbulence is some convective regimes.<br>Furthermore, results are sensitive to aerosols concentrations. Additional implications for the role of mixed-phase clouds in the Arctic Amplification will be discussed.</p>


2013 ◽  
Vol 26 (16) ◽  
pp. 5981-5999 ◽  
Author(s):  
Shaocheng Xie ◽  
Xiaohong Liu ◽  
Chuanfeng Zhao ◽  
Yuying Zhang

Abstract Sensitivity of Arctic clouds and radiation in the Community Atmospheric Model, version 5, to the ice nucleation process is examined by testing a new physically based ice nucleation scheme that links the variation of ice nuclei (IN) number concentration to aerosol properties. The default scheme parameterizes the IN concentration simply as a function of ice supersaturation. The new scheme leads to a significant reduction in simulated IN concentration at all latitudes while changes in cloud amounts and properties are mainly seen at high- and midlatitude storm tracks. In the Arctic, there is a considerable increase in midlevel clouds and a decrease in low-level clouds, which result from the complex interaction among the cloud macrophysics, microphysics, and large-scale environment. The smaller IN concentrations result in an increase in liquid water path and a decrease in ice water path caused by the slowdown of the Bergeron–Findeisen process in mixed-phase clouds. Overall, there is an increase in the optical depth of Arctic clouds, which leads to a stronger cloud radiative forcing (net cooling) at the top of the atmosphere. The comparison with satellite data shows that the new scheme slightly improves low-level cloud simulations over most of the Arctic but produces too many midlevel clouds. Considerable improvements are seen in the simulated low-level clouds and their properties when compared with Arctic ground-based measurements. Issues with the observations and the model–observation comparison in the Arctic region are discussed.


2008 ◽  
Vol 136 (12) ◽  
pp. 4746-4759 ◽  
Author(s):  
R. M. Samelson ◽  
P. L. Barbour

Abstract A mesoscale atmospheric model, nested in operational global numerical weather prediction fields, is used to estimate low-level winds and surface wind stress through Nares Strait, between Ellesmere Island and Greenland, during 2 yr from August 2003 to July 2005. During most of the year, the model low-level winds are dominated by intense, southward along-strait flow, with monthly-mean southward 10-m winds reaching 10 m s−1 in winter. Summertime flow is weak and distributions of hourly along-strait winds during the 2-yr period are strongly bimodal. The strong southward low-level winds are associated with ageostrophic, orographically channeled flow down the pressure gradient from the Lincoln Sea to Baffin Bay and are highly correlated with the pressure difference along Nares Strait. The 2-yr means and leading EOFs of monthly-mean 10-m winds and wind stress place the strongest winds and stress in the southern parts of Smith Sound and of Kennedy Channel, at the openings to Baffin Bay and Kane Basin, at known sites of polynya formation, including the North Water polynya in Smith Sound, suggesting that the locally intensified winds may cause these persistent polynyas. An intense wind event observed in Nares Strait by a field camp, with surface winds exceeding 30 m s−1, generally follows the typical pattern of these low-level flows. Based on the model correlation of winds and pressure difference, a 51-yr time series of estimated winds in Nares Strait is reconstructed from historical surface pressure measurements at Thule, Greenland, and Alert, Canada. The pressure difference and reconstructed wind time series are correlated with the Arctic Oscillation at annual and longer periods, but not on monthly periods.


2013 ◽  
Vol 13 (1) ◽  
pp. 2125-2153
Author(s):  
L. Jakobson ◽  
T. Vihma ◽  
E. Jakobson ◽  
T. Palo ◽  
A. Männik ◽  
...  

Abstract. Low-level jets (LLJ) are important for turbulence in the stably stratified atmospheric boundary layer, but their occurrence, properties, and generation mechanisms in the Arctic are not well known. We analysed LLJs over the central Arctic Ocean in spring and summer 2007 on the bases of data collected in the drifting ice station Tara. Instead of traditional radiosonde soundings, data from tethersonde soundings with a high vertical resolution were used. The Tara results showed a lower occurrence of LLJs (46%) than many previous studies over polar sea ice. Strong jet core winds contributed to growth of the turbulent layer. Complex relationship between the jet core height and the temperature inversion top height were detected: substantial correlation (r = 0.72; p < 0.01) occurred when the jet core was above the turbulent layer, but inside the turbulent layer there was no correlation. The most important forcing mechanism for LLJs was baroclinicity, which was responsible for generation of strong and warm LLJs, which on average occurred at lower altitudes than other jets. Baroclinic jets were mostly associated to transient cyclones instead of the climatological air temperature gradients. Besides baroclinicity, cases related to inertial oscillations, gusts, and fronts were detected. In approximately 50% of the observed LLJs the generation mechanism remained unclear, but in most of these cases the wind speed was strong in the whole vertical profile, the jet core representing only a weak maximum. Further research needs on LLJs in the Arctic include investigation of low-level jet streams and their effects on the sea ice drift and atmospheric moisture transport.


2015 ◽  
Vol 15 (19) ◽  
pp. 27539-27573 ◽  
Author(s):  
T. J. Roberts ◽  
M. Dütsch ◽  
L. R. Hole ◽  
P. B. Voss

Abstract. Observations from CMET (Controlled Meteorological) balloons are analyzed in combination with mesoscale model simulations to provide insights into tropospheric meteorological conditions (temperature, humidity, wind-speed) around Svalbard, European High Arctic. Five Controlled Meteorological (CMET) balloons were launched from Ny-Ålesund in Svalbard over 5–12 May 2011, and measured vertical atmospheric profiles above Spitsbergen Island and over coastal areas to both the east and west. One notable CMET flight achieved a suite of 18 continuous soundings that probed the Arctic marine boundary layer over a period of more than 10 h. The CMET profiles are compared to simulations using the Weather Research and Forecasting (WRF) model using nested grids and three different boundary layer schemes. Variability between the three model schemes was typically smaller than the discrepancies between the model runs and the observations. Over Spitsbergen, the CMET flights identified temperature inversions and low-level jets (LLJ) that were not captured by the model. Nevertheless, the model largely reproduced time-series obtained from the Ny-Ålesund meteorological station, with exception of surface winds during the LLJ. Over sea-ice east of Svalbard the model underestimated potential temperature and overestimated wind-speed compared to the CMET observations. This is most likely due to the full sea-ice coverage assumed by the model, and consequent underestimation of ocean–atmosphere exchange in the presence of leads or fractional coverage. The suite of continuous CMET soundings over a sea-ice free region to the northwest of Svalbard are analysed spatially and temporally, and compared to the model. The observed along-flight daytime increase in relative humidity is interpreted in terms of the diurnal cycle, and in the context of marine and terrestrial air-mass influences. Analysis of the balloon trajectory during the CMET soundings identifies strong wind-shear, with a low-level channeled flow. The study highlights the challenges of modelling the Arctic atmosphere, especially in coastal zones with varying topography, sea-ice and surface conditions. In this context, CMET balloons provide a valuable technology for profiling the free atmosphere and boundary layer in remote regions where few other observations are available for model validation.


Sign in / Sign up

Export Citation Format

Share Document