Limiting deformation in rotary drawing of anisotropic pipe blanks with wall thinning

2016 ◽  
Vol 36 (6) ◽  
pp. 472-475
Author(s):  
S. S. Yakovlev ◽  
V. I. Tregubov ◽  
E. V. Osipova
Author(s):  
S. R. Rakhmanov

In some cases, the processes of piercing or expanding pipe blanks involve the use of high-frequency active vibrations. However, due to insufficient knowledge, these processes are not widely used in the practice of seamless pipes production. In particular, the problems of increasing the efficiency of the processes of piercing or expanding a pipe blank at a piercing press using high-frequency vibrations are being solved without proper research and, as a rule, by experiments. The elaboration of modern technological processes for the production of seamless pipes using high-frequency vibrations is directly related to the choice of rational modes of metal deformation and the prediction resistance indicators of technological tools and the reliability of equipment operation. The creation of a mathematical model of the process of vibrating piercing (expansion) of an axisymmetric pipe blank at a piercing press of a pipe press facility is an actual task. A calculation scheme for the process of piercing a pipe plank has been elaborated. A dependence was obtained characterizing the speed of front of plastic deformation propagation on the speed of penetration of a vibrated axisymmetric mandrel into the pipe workpiece being pierced. The dynamic characteristics of the occurrence of wave phenomena in the metal being pierced under the influence of a vibrated tool have been determined, which significantly complements the previously known ideas about the stress-strain state of the metal in the deformation zone. The deformation fields in the zones of the disturbed region of the deformation zone were established, taking into account the high-frequency vibrations of the technological tool. It has been established that the choice of rational parameters (amplitude-frequency characteristics) of the vibration piercing process of a pipe blank results in significant increase in the efficiency of the process, the durability of the technological tool and the quality of the pierced blanks.


Author(s):  
Kunio Hasegawa ◽  
Yinsheng Li ◽  
Bostjan Bezensek ◽  
Phuong Hoang

Piping items in power plants may experience combined bending and torsion moments during operation. Currently, there is a lack of guidance in the ASME B&PV Code Section XI for combined loading modes including pressure, torsion and bending. Finite element analyses were conducted for 24-inch diameter Schedule 80 pipes with local wall thinning subjected to tensile and compressive stresses. Plastic collapse bending moments were calculated under constant torsion moments. From the calculation results, it can be seen that collapse bending moment for pipes with local thinning subjected to tensile stress is smaller than that subjected to compressive stress. In addition, equivalent moment is defined as the root the sum of the squares of the torsion and bending moments. It is found that the equivalent moments can be approximated with the pure bending moments, when the wall thinning length is equal or less than 7.73R·t for the wall thinning depth of 75% of the nominal thickness, where R is the mean radius and t is the wall thickness of the pipe.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Izumi Nakamura ◽  
Akihito Otani ◽  
Masaki Shiratori

Pressurized piping systems used for an extended period may develop degradations such as wall thinning or cracks due to aging. It is important to estimate the effects of degradation on the dynamic behavior and to ascertain the failure modes and remaining strength of the piping systems with degradation through experiments and analyses to ensure the seismic safety of degraded piping systems under destructive seismic events. In order to investigate the influence of degradation on the dynamic behavior and failure modes of piping systems with local wall thinning, shake table tests using 3D piping system models were conducted. About 50% full circumferential wall thinning at elbows was considered in the test. Three types of models were used in the shake table tests. The difference of the models was the applied bending direction to the thinned-wall elbow. The bending direction considered in the tests was either of the in-plane bending, out-of-plane bending, or mixed bending of the in-plane and out-of-plane. These models were excited under the same input acceleration until failure occurred. Through these tests, the vibration characteristic and failure modes of the piping models with wall thinning under seismic load were obtained. The test results showed that the out-of-plane bending is not significant for a sound elbow, but should be considered for a thinned-wall elbow, because the life of the piping models with wall thinning subjected to out-of-plane bending may reduce significantly.


Author(s):  
Satoshi Okajima ◽  
Satoshi Izumi ◽  
Shinsuke Sakai

To rationalize the inspection interval for the wall-thinning piping element, the linear-Bayes method was proposed in the previous paper. To derive the simple formula, the linear-Bayes method ignores the corrosion rate change against time. However, this change may be caused by the one of the operational environment. Therefore, without the sufficient monitoring of the environment, the linear-Bayes method may underestimate the failure probability. In this paper, the linear-Bayes method is extended for the wall-thinning model with the corrosion rate fluctuation, which imitates the unexpected change of the corrosion rate. The extension is carried out through following two approaches: the “correction-term” and the “error-term” approaches. The correction-term approach can evaluate the change of corrosion rate, however, it requires sufficient number of inspections. The error-term approach evaluates the failure probability conservatively.


Author(s):  
Yi Han ◽  
Feng Liu ◽  
Xin Ran

In the production process of large-diameter seamless steel pipes, the blank heating quality before roll piercing has an important effect on whether subsequently conforming piping is produced. Obtaining accurate pipe blank heating temperature fields is the basis for establishing and optimizing a seamless pipe heating schedule. In this paper, the thermal process in a regenerative heating furnace was studied using fluent software, and the distribution laws of the flow field in the furnace and of the temperature field around the pipe blanks were obtained and verified experimentally. The heating furnace for pipe blanks was analyzed from multiple perspectives, including overall flow field, flow fields at different cross sections, and overall temperature field. It was found that the changeover process of the regenerative heating furnace caused the temperature in the upper part of the furnace to fluctuate. Under the pipe blanks, the gas flow was relatively thin, and the flow velocity was relatively low, facilitating the formation of a viscous turbulent layer and thereby inhibiting heat exchange around the pipe blanks. The mutual interference between the gas flow from burners and the return gas from the furnace tail flue led to different flow velocity directions at different positions, and such interference was relatively evident in the middle part of the furnace. A temperature “layering” phenomenon occurred between the upper and lower parts of the pipe blanks. The study in this paper has some significant usefulness for in-depth exploration of the characteristics of regenerative heating furnaces for steel pipes.


Author(s):  
Isoharu Nishiguchi ◽  
Fumitoshi Sakata ◽  
Seiichi Hamada

A method to investigate pipe wall thinning using guided waves has been developed for pipes in thermal power generation facilities. In this paper, the reflection coefficient and the transmission coefficient are derived for the torsional waves which propagate along a pipe and a simplified method to predict the waveform is proposed. The predictions of the waveforms by the FEM and a simplified method based on the reflection of torsional waves are also examined by comparing with experimental data.


Sign in / Sign up

Export Citation Format

Share Document