scholarly journals Additive Manufacturing by MMA Welding Process Characteristics and Microstructural, Mechanical Properties: Propose to Modify the Welding Procedure Specification

Author(s):  
Mir Mostafa Hosseinioun
Metals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1164
Author(s):  
Jisun Kim ◽  
Jaewoong Kim ◽  
Changmin Pyo

This study compared the mechanical properties of the NAB (Ni-Al-bronze) material fabricated using wire arc additive manufacturing (WAAM) technology with those of the cast NAB. Using a CMT (cold metal transfer) welding process, this study analyzed the bead shape for six welding conditions, determined an appropriate bead shape, and fabricated a square bulk NAB material using the bead shape. For a mechanical properties comparison, the study obtained two test specimens per welding direction from the fabricated bulk NAB material, and compared those with the cast NAB materials. In the tensile test, the deposited NAB material showed significantly better results than the cast NAB; furthermore, the deposited NAB material showed better performance than the cast NAB material in the Vickers hardness test, impact test and wear test. In addition, the deposited NAB showed anisotropy depending on the welding direction, and showed high tensile strength, hardness and shock absorption in the longitudinal direction of the welding line.


Author(s):  
Ramakrishnan Mannarsamy ◽  
S. K. Shrivastava ◽  
Piyush Thakor ◽  
Gautam Chauhan ◽  
S. K. Joshi ◽  
...  

For achieving high productivity multiple wire submerged arc welding such as tandem wire, three wires and five wires submerged arc welding was introduced in recent past years. Due to adding of additional wires in a pipe mill faced process difficulties such as controlling the current supply to each wire and further challenges for consumable design in order to give effective slag characteristics and bead shape control at these higher welding speeds and heat inputs. To gain maximum productivity, welding speed must be as fast as possible (in excess of 2 m/min) consistent with reliable high speed wire feeding and the characteristics of the SAW flux considering these factors in determining the balance of heat input, penetration, bead shape, dilution, weld metal chemistry and mechanical properties such as toughness. Steels containing high strength low alloying elements like Manganese, Molybdenum, Titanium and boron have favorable physical properties such as higher subzero toughness, resistance to improve the mechanical properties because of which there is substantial saving in the material. High strength low alloy steels materials are utilized in offshore and onshore at critical services. However, such benefits can be exploited provided these steels can be welded with appropriate development of welding process such as cold wire addition® in multi wires with process controller using WINCC programmer, Z5 version to give better weldments, which will not compromise the integrity, and operating condition. To obtain higher productivity and quality, it is necessary to develop a welding procedure for butt joint of line pipe steels. This paper describes the recent work carried out by Welspun, in this regard to establish the welding procedure using GMAW and submerged arc welding process and evaluation of mechanical properties. Macro and micro structural analysis were also made to characterize the weld metal properties.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1009 ◽  
Author(s):  
Marcel Graf ◽  
Andre Hälsig ◽  
Kevin Höfer ◽  
Birgit Awiszus ◽  
Peter Mayr

Additive manufacturing processes have been investigated for some years, and are commonly used industrially in the field of plastics for small- and medium-sized series. The use of metallic deposition material has been intensively studied on the laboratory scale, but the numerical prediction is not yet state of the art. This paper examines numerical approaches for predicting temperature fields, distortions, and mechanical properties using the Finite Element (FE) software MSC Marc. For process mapping, the filler materials G4Si1 (1.5130) for steel, and AZ31 for magnesium, were first characterized in terms of thermo-physical and thermo-mechanical properties with process-relevant cast microstructure. These material parameters are necessary for a detailed thermo-mechanical coupled Finite Element Method (FEM). The focus of the investigations was on the numerical analysis of the influence of the wire feed (2.5–5.0 m/min) and the weld path orientation (unidirectional or continuous) on the temperature evolution for multi-layered walls of miscellaneous materials. For the calibration of the numerical model, the real welding experiments were carried out using the gas-metal arc-welding process—cold metal transfer (CMT) technology. A uniform wall geometry can be produced with a continuous welding path, because a more homogeneous temperature distribution results.


2021 ◽  
Vol 30 (1) ◽  
pp. 188-198
Author(s):  
Bellamkonda Prasanna Nagasai ◽  
Sudersanan Malarvizhi ◽  
Visvalingam Balasubramanian

Abstract Wire arc additive manufacturing (WAAM), a welding-based additive manufacturing (AM) method, is a hot topic of research since it allows for the cost-effective fabrication of large-scale metal components at relatively high deposition rates. In the present study, the cylindrical component of low carbon steel (ER70S-6) was built by WAAM technique, using a GMAW torch that was translated by an automated three-axis motion system using a rotation table. The mechanical properties of the component were evaluated by extracting tensile, impact toughness and hardness specimens from the two regions of the building up (vertical) direction. It is found that the tensile properties of the built material exhibited anisotropic characteristics. The yield strength and ultimate tensile strength varied from 333 to 350 MPa and from 429 to 446 MPa, respectively, (less than 5 % variation).


2020 ◽  
Vol 118 (1) ◽  
pp. 108
Author(s):  
M.A. Vinayagamoorthi ◽  
M. Prince ◽  
S. Balasubramanian

The effects of 40 mm width bottom plates on the microstructural modifications and the mechanical properties of a 6 mm thick FSW AA6061-T6 joint have been investigated. The bottom plates are placed partially at the weld zone to absorb and dissipate heat during the welding process. An axial load of 5 to 7 kN, a rotational speed of 500 rpm, and a welding speed of 50 mm/min are employed as welding parameters. The size of the nugget zone (NZ) and heat-affected zone (HAZ) in the weld joints obtained from AISI 1040 steel bottom plate is more significant than that of weld joints obtained using copper bottom plate due to lower thermal conductivity of steel. Also, the weld joints obtained using copper bottom plate have fine grain microstructure due to the dynamic recrystallization. The friction stir welded joints obtained with copper bottom plate have exhibited higher ductility of 8.9% and higher tensile strength of 172 MPa as compared to the joints obtained using a steel bottom plate.


Author(s):  
Josué Rafael Sánchez-Lerma ◽  
Luis Armando Torres-Rico ◽  
Héctor Huerta-Gámez ◽  
Ismael Ruiz-López

This paper proposes the development of the methodology to be carried out for the metal joining process through the GMAW welding process in the Fanuc LR Mate 200iD industrial robot. The parameters or properties were considered for the application to be as efficient as possible, such parameters as speed of application, characteristics of the filler material, gas to be used as welding protection. The GMAW welding process can be applied semiautomatically using a hand gun, in which the electrode is fed by a coil, or an automatic form that includes automated equipment or robots. The advantages and disadvantages of the GMAW welding process applied in a manual and automated way were commented. The mechanical properties of the materials to which said welding can be applied were investigated; The materials with which this type of welding can be worked are the high strength materials, which are used in the automotive industry, for the forming of sheet metal. To know the properties of the material, destructive tests were carried out on the test material to be used, as well as the mechanical properties of the welding.


2021 ◽  
Vol 11 (10) ◽  
pp. 4694
Author(s):  
Christian Wacker ◽  
Markus Köhler ◽  
Martin David ◽  
Franziska Aschersleben ◽  
Felix Gabriel ◽  
...  

Wire arc additive manufacturing (WAAM) is a direct energy deposition (DED) process with high deposition rates, but deformation and distortion can occur due to the high energy input and resulting strains. Despite great efforts, the prediction of distortion and resulting geometry in additive manufacturing processes using WAAM remains challenging. In this work, an artificial neural network (ANN) is established to predict welding distortion and geometric accuracy for multilayer WAAM structures. For demonstration purposes, the ANN creation process is presented on a smaller scale for multilayer beads on plate welds on a thin substrate sheet. Multiple concepts for the creation of ANNs and the handling of outliers are developed, implemented, and compared. Good results have been achieved by applying an enhanced ANN using deformation and geometry from the previously deposited layer. With further adaptions to this method, a prediction of additive welded structures, geometries, and shapes in defined segments is conceivable, which would enable a multitude of applications for ANNs in the WAAM-Process, especially for applications closer to industrial use cases. It would be feasible to use them as preparatory measures for multi-segmented structures as well as an application during the welding process to continuously adapt parameters for a higher resulting component quality.


Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


Author(s):  
Chen Hu ◽  
Malik Haider ◽  
Lukas Hahn ◽  
Mengshi Yang ◽  
Robert Luxenhofer

Hydrogels that can be processed with additive manufacturing techniques and concomitantly possess favorable mechanical properties are interesting for many advanced applications. However, the development of novel ink materials with high...


Sign in / Sign up

Export Citation Format

Share Document