Activation of Cellular Oncogenes in Human and Mouse Leukemia-Lymphomas: Spontaneous and Induced Oncogene Expression in Murine B Lymphocytic Neoplasms

1987 ◽  
Vol 5 (4) ◽  
pp. 345-368 ◽  
Author(s):  
J. Frederic Mushinski ◽  
Wendy Davidson ◽  
Herbert Morse
Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 1325-1325
Author(s):  
Chris L Cochrane ◽  
Hind Medyouf ◽  
Andrew P. Weng

Abstract The highly conserved Notch gene is activated by mutation in more than half of human T cell acute lymphoblastic leukemia (T-ALL) cases. The Notch protein is a transmembrane receptor which, upon binding of its ligand, is cleaved in a series of proteolytic steps releasing the intracellular portion (ICN) to translocate to the nucleus where it acts as a transcriptional activator for target genes such as HES1, Deltex, preTalpha, and c-Myc. To better understand the mechanism by which Notch causes leukemogenesis, microarray gene expression profiling experiments where conducted on five human Notch signaling-dependent T-ALL cell lines which where either mock-treated or treated with a gamma-secretase inhibitor (GSI) to prevent the release of Notch from the membrane. The Polycomb Group gene PCGF5 was identified as one of the genes most strongly downregulated upon Notch inhibition. This regulation was subsequently confirmed by quantitative RT-PCR in both human and mouse leukemia cell lines. Our interest in this gene was encouraged by its homology to the well-known oncogene Bmi-1, which acts to modify chromatin and silence expression of several genes including the cyclin-dependent kinase inhibitors p16 and p19ARF within the CDKN2a locus. Interestingly, we found that inhibition of Notch signaling by GSI treatment in both human and mouse leukemia cells resulted in an increase of both p16 and p19ARF at the mRNA and protein levels. This suggested that Notch may be responsible for maintaining expression of a transcriptional repressor that suppresses p16 and p19ARF. We hypothesize that PCGF5 may be acting in a manner analogous to Bmi-1 in this cellular context and thus mediating p16/p19ARF repression. Studies to test this hypothesis are currently in progress. To further investigate the role of PCGF5 in hematopoiesis, mouse bone marrow progenitors were transduced with retrovirus to express PCGF5 constitutively and transplanted into lethally irradiated recipients. Our results show long term reconstitution by PCGF5-expressing cells with as yet no evidence of PCGF5-induced hematopoeitic malignancy in a small cohort up to 6 months post-transplant. However, we did observe cells expressing high levels of PCGF5 to be skewed toward myeloid lineages, while mid-level expressing cells develop efficiently into lymphocytes. We detected no defects in B cell maturation; however, PCGF5-expressing T cell numbers were significantly lower than controls in the peripheral blood and spleen of recipient animals. Consistent with this observation, fetal thymic organ culture of PCGF5-transduced fetal liver hematopoietic progenitors showed accumulation in the early double negative thymocyte stages. Additionally, we found PCGF5-expressing B and T lymphocytes to be larger than control cells, and preliminary data suggests these cells may be arrested in G2/M phase of the cell cycle. Biochemical studies are also in progress to assess participation of PCGF5 in the Polycomb Repressive Complex PRC-1 and its effect on chromatin structure. In sum, these preliminary data suggest enforced PCGF5 expression, though not oncogenic, alters normal lymphoid/myeloid fate selection by hematopoietic progenitors and may affect lymphoid cell size by altering cell cycle progression.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 3000-3000
Author(s):  
Jianjun Chen ◽  
Miao Sun ◽  
Roger T. Luo ◽  
Jingyue Bao ◽  
Masha Kocherginsky ◽  
...  

Abstract Although more than 50 different loci translocate to the MLL gene at chromosome band 11q23, resulting in either acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL), no unifying property is shared by all partner genes. The translocations result in a functional fusion of the N-terminal part of MLL gene and the C-terminal part of each partner gene, presumably leading to changes in the expression of the normal target genes, most of which have not been identified. Although genetically engineered mouse leukemia models have been widely used, few systematic studies have evaluated whether such models are valid equivalents of human leukemia. We used serial analysis of gene expression (SAGE) to obtain genome-wide gene expression profiles in normal myeloid progenitor cells from human CD15+ and mouse Gr-1+ cells. We also analyzed four patient samples (two with each fusion) and two retrovirally-induced mouse leukemias containing either MLL-ELL [t(11;19)(q23;p13.1)] or MLL-ENL [t(11;19)(q23;p13.3)] fusions, and a cell line from a leukemia mouse transduced with an MLL-ELL fusion. MLL-ELL and MLL-ENL fusions are frequently involved in human AML, while MLL-ENL is also seen in human ALL. 484,303 SAGE tags were identified from the nine samples (40,000 to 100,000 tags per sample), yielding 103,899 unique SAGE tags in the human and 60,993 in the mouse samples. Analysis of the SAGE data identified 43 candidate genes that appear to be abnormally expressed in both human and mouse myeloid leukemia progenitor cells with either MLL-ELL or MLL-ENL fusions (9 up-regulated and 34 down-regulated; Table 1). Increasing evidence suggests that endogenous antisense RNAs may play critical roles in gene regulation and cancer. Natural antisense RNAs include cis-encoded antisense RNAs transcribed from the opposite strand of the same genomic locus as the sense target genes, and trans-encoded antisense RNAs such as microRNAs (miRNAs) transcribed from a genomic locus different from the sense target genes. 26 of the 43 candidate genes have antisense partners (with a total of 7 cis-encoded antisense RNAs and 36 trans-encoded miRNAs) and thereby might be regulated by endogenous antisense RNAs. We are currently validating the expression pattern of the 43 candidate genes in at least 30 different human and mouse leukemia and normal control samples with quantitative RT-PCR, and measuring the level of expression of all known miRNAs via microarray in these samples. Our studies on the abnormally expressed genes and their potential antisense partners will provide important insights into the complex functional pathways related to MLL rearrangements in the development of acute leukemia, which may lead to more effective therapy for these leukemias. Table 1. Genes deregulated in both human and mouse leukemiasa Total number Up-regulated genes Down-regulated genes Genes with antisense partner(s) aThe genes have at least 3 fold difference in expression with a significance P < 0.05 between each leukemia sample and the normal control sample. In MLL-ELL fusions 21 1 20 12 In MLL-ENL fusions 33 8 25 21 In both types of fusions 11 0 11 7 Total unique genes 43 9 34 26


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2249-2249
Author(s):  
Zejuan Li ◽  
Miao Sun ◽  
Shuangli Mi ◽  
Roger T. Luo ◽  
Jingyue Bao ◽  
...  

Abstract Chromosome translocations are among the most common genetic abnormalities in human leukemia. Their abnormally expressed genes identify specific markers for their clinical diagnosis. Important biological properties are often conserved across species. However, although genetically engineered mouse leukemia models are well-established, few systematic studies have validated the genes that exhibit similar abnormal expression patterns in both human and mouse leukemia models. MLL-ELL and MLL-ENL fusion genes resulting from t(11;19)(q23;p13.1) and t(11;19)(q23;p13.3), respectively, are frequently involved in human acute leukemia, and in retrovirus-mediated mouse leukemia models. We used the SAGE technique to compare gene expression profiles between MLL-ELL or MLL-ENL myeloid leukemia progenitor cells and normal myeloid progenitor cells in both human and mouse. We analyzed four patient samples (two with each fusion) and two retrovirally-induced mouse leukemias containing either MLL-ELL or MLL-ENL fusions, and a leukemia cell line with an MLL-ELL fusion. 484,303 SAGE tags were identified from the nine samples, yielding 103,899 unique tags in human and 60,993 in mouse samples. We identified 40 candidate genes that appear to be abnormally expressed in both human and murine MLL-ELL leukemias (2 up- and 38 down-regulated), and 72 in both human and murine MLL-ENL leukemias (23 up and 49 down). 25 candidate genes are down-regulated in both types of leukemias, and many of them can bind with and/or regulate other candidate genes in the candidate list. For example, LCN2 can bind directly with and positively regulate MMP9; MMP9 and TMSB4X may positively regulate FOS; FOS and JUNB can bind directly and positively regulate each other. JUNB may inhibit proliferation and promote apoptosis, and it was reported that inactivation of JunB in LT-HSC leads to MPD while its inactivation in committed myeloid progenitors also predisposes to leukemia evolution. LCN2 may also positively regulate apoptosis. Meanwhile, some important candidate genes are observed only in one type of leukemia. For example, both PXN and ARHGEF1 are down-regulated only in MLL-ELL leukemias. PXN can bind directly with ARHGEF1, and the latter may inhibit proliferation. Similarly, MYB is significantly upregulated only in MLL-ENL leukemias, which was reported to play a role in MLL-ENL-mediated transformation. Taken together, some common pathways may exist in the development of both types of leukemias, whereas each may also have their own pathway. The deregulation of the important candidate genes may contribute to leukemogenesis through inhibiting apoptosis while promoting proliferation of hematopoietic cells. We have validated the expression patterns of the candidate genes, and are studying the functions and pathways of the validated candidate genes. Our studies will provide important insights into the complex functional pathways related to MLL rearrangements in the development of acute myeloid leukemia, which may lead to more effective therapy for these leukemias.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
John J. Wolosewick

Classically, the male germinal epithelium is depicted as synchronously developing uninucleate spermatids conjoined by intercellular bridges. Recently, binucleate and multinucleate spermatids from human and mouse testis have been reported. The present paper describes certain developmental events in one type of binucleate spermatid in the seminiferous epithelium of the mouse.Testes of adult mice (ABP Jax) were removed from the animals after cervical dislocation and placed into 2.5% glutaraldehyde/Millonig's phosphate buffer (pH 7.2). Testicular capsules were gently split and separated, exposing the tubules. After 15 minutes the tissue was carefully cut into cubes (approx. 1mm), fixed for an additional 45 minutes and processed for electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document