In Situ Embedding in Epoxy Resin of Tissue Cultured in Leighton Tubes; Selection of Single Cells for Electron Microscopy

1965 ◽  
Vol 40 (3) ◽  
pp. 151-155 ◽  
Author(s):  
Jerry S. Sutton
1991 ◽  
Vol 66 (5) ◽  
pp. 269-272 ◽  
Author(s):  
A. Beatrice Murray ◽  
Helga Schulze ◽  
Elisabeth Blauw

1998 ◽  
Vol 4 (6) ◽  
pp. 653-666 ◽  
Author(s):  
J. Delgado Rodrigues ◽  
A.P. Ferreiro Pinto ◽  
A.E. Charola ◽  
L. Aires-Barros ◽  
F.M.A. Henriques

Abstract During the exterior conservation project of the Tower of Belem, Lisbon, it was noticed that although most of the Lioz limestone used in its construction was in good condition, some specific areas presented severe powdering and flaking deterioration patterns. These are mainly due to the effect of natural weathering, including anthropogenic air-pollution, on poorer quality Lioz limestone. Since the deterioration affects mainly the immediate surface and subsurface of the stone blocks, the application of stone consolidants was considered as the most appropriate solution for this problem. This paper describes the difficulties encountered in the evaluation of the tested consolidants-an ethyl silicate ester, an acrylic resin and an epoxy resin-applied in situ. The laboratory and on-site testing used in the final selection are described as well as the actual approach to consolidating the different areas that required this treatment.


2010 ◽  
Vol 160-162 ◽  
pp. 1405-1408 ◽  
Author(s):  
Qing Ming Jia ◽  
Shao Yun Shan ◽  
Li Hong Jiang ◽  
Ya Ming Wang

Polyaniline(PANI) nanofibers were firstly prepared by rapid mixture method, EP/PANI nanocomposite was obtained by in-situ adding the PANI nanofibers to epoxy resin(EP). Scanning electron microscopy(SEM) proves that the type of doped acids has a little effect on the morphologies of PANI, and the PANI doped by different acids present nanofiber structures with the diameter of about 50 nm. The thermal behaviour of EP/PANI nanocomposites were investigated in detail by using a dynamic rate mode of thermogravimetric analyser (TGA) in inert atmosphere, and the results show that the PANI nanofibers obviously improve thermal stability of pure EP. Compared with EP/PANI doped by nitric acid or sulfuric acid, EP/PANI doped by phosphoric acid has best thermal stability.


Polymers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 518
Author(s):  
Woong Kwon ◽  
Minwoo Han ◽  
Jongwon Kim ◽  
Euigyung Jeong

This study investigated the toughening effect of in situ polytriazoleketone (PTK) and polytriazolesulfone (PTS) toughening agent when applied to various epoxy resins, such as diglycidyl ether of bisphenol A (DGEBA), diglycidyl ether of bisphenol F (DGEBF), and triglycidyl p-aminophenol (TGAP) with 3,3′-diaminodiphenylsulfone as a curing agent. The fracture toughness, tensile properties, and thermal properties of the prepared epoxy samples were evaluated and compared. When PTK was mixed with DGEBF, the fracture toughness was improved by 27% with 8.6% increased tensile strength compared to the untoughened DGEBF. When PTS was mixed with TGAP, the fracture toughness was improved by 51% without decreasing tensile properties compared to the untoughened TGAP. However, when PTK or PTS was mixed with other epoxy resins, the fracture toughness decreased or improved with decreasing tensile properties. This is attributed to the poor miscibility between the solid-state monomer of PTK (4,4′-bis(propynyloxy)benzophenone (PBP)) or PTS (4,4′-sulfonylbis(propynyloxy)benzene (SPB)) and the epoxy resin, resulting in the polymerization of low molecular weight PTK or PTS in epoxy resin. Therefore, the toughening effect of PTK or PTS can be maximized by the appropriate selection of epoxy resin based on the miscibility between PBP or SPB and the resin.


1973 ◽  
Vol 80 (2) ◽  
pp. 486-490 ◽  
Author(s):  
Marlene Sabbath ◽  
Barbro Anderson ◽  
H.L. Ioachim

Author(s):  
Joseph E. Mazurkiewicz

Immunocytochemistry is a powerful investigative approach in which one of the most exacting examples of specificity, that of the reaction of an antibody with its antigen, isused to localize tissue and cell specific molecules in situ. Following the introduction of fluorescent labeled antibodies in T950, a large number of molecules of biological interest had been studied with light microscopy, especially antigens involved in the pathogenesis of some diseases. However, with advances in electron microscopy, newer methods were needed which could reveal these reactions at the ultrastructural level. An electron dense label that could be coupled to an antibody without the loss of immunologic activity was desired.


Author(s):  
D. J. McComb ◽  
J. Beri ◽  
F. Zak ◽  
K. Kovacs

Gonadotroph cell adenomas of the pituitary are infrequent in human patients and are not invariably associated with altered gonadal function. To date, no animal model of this tumor type exists. Herein, we describe spontaneous gonadotroph cell adenomas in old male and female Sprague-Dawley rats by histology, immunocytology and electron microscopy.The material consisted of the pituitaries of 27 male and 38 female Sprague Dawley rats, all 26 months of age or older, removed at routine autopsy. Sections of formal in-fixed, paraffin-embedded tissue were stained with hematoxylin-phloxine-saffron (HPS), the PAS method and the Gordon-Sweet technique for the demonstration of reticulin fibers. For immunostaining, sections were exposed to anti-rat β-LH, anti-ratβ-TSH, anti-rat PRL, anti-rat GH and anti-rat ACTH 1-39. For electron microscopy, tissue was fixed in 2.5% glutaraldehyde, postfixed in 1% OsO4 and embedded in epoxy-resin. Tissue fixed in 10% formalin, embedded in epoxy resin without osmification, was used for immunoelectron microscopy.


Sign in / Sign up

Export Citation Format

Share Document