scholarly journals Genetic analyses of anthocyanin content using polyploid GWAS followed by QTL detection in the sweetpotato (Ipomoea batatas L.) storage root

Plant Root ◽  
2020 ◽  
Vol 14 (0) ◽  
pp. 11-21
Author(s):  
Emdadul Haque ◽  
Eiji Yamamoto ◽  
Kenta Shirasawa ◽  
Hiroaki Tabuchi ◽  
Ung-Han Yoon ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Daowei Zhang ◽  
Yongjun Tan ◽  
Fang Dong ◽  
Ya Zhang ◽  
Yanlan Huang ◽  
...  

IbMYB1 was one of the major anthocyanin biosynthesis regulatory genes that has been identified and utilized in purple-fleshed sweet potato breeding. At least three members of this gene, namely, IbMYB1-1, -2a, and -2b, have been reported. We found that IbMYB1-2a and -2b are not necessary for anthocyanin accumulation in a variety of cultivated species (hexaploid) with purple shoots or purplish rings/spots of flesh. Transcriptomic and quantitative reverse transcription PCR (RT-qPCR) analyses revealed that persistent and vigorous expression of IbMYB1 is essential to maintain the purple color of leaves and storage roots in this type of cultivated species, which did not contain IbMYB1-2 gene members. Compared with IbbHLH2, IbMYB1 is an early response gene of anthocyanin biosynthesis in sweet potato. It cannot exclude the possibility that other MYBs participate in this gene regulation networks. Twenty-two MYB-like genes were identified from 156 MYBs to be highly positively or negatively correlated with the anthocyanin content in leaves or flesh. Even so, the IbMYB1 was most coordinately expressed with anthocyanin biosynthesis genes. Differences in flanking and coding sequences confirm that IbMYB2s, the highest similarity genes of IbMYB1, are not the members of IbMYB1. This phenomenon indicates that there may be more members of IbMYB1 in sweet potato, and the genetic complementation of these members is involved in the regulation of anthocyanin biosynthesis. The 3′ flanking sequence of IbMYB1-1 is homologous to the retrotransposon sequence of TNT1-94. Transposon movement is involved in the formation of multiple members of IbMYB1. This study provides critical insights into the expression patterns of IbMYB1, which are involved in the regulation of anthocyanin biosynthesis in the leaf and storage root. Notably, our study also emphasized the presence of a multiple member of IbMYB1 for genetic improvement.


2000 ◽  
Vol 50 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Masaru Yoshinaga ◽  
Masaru Tanaka ◽  
Makoto Nakatani

2017 ◽  
Vol 43 (8) ◽  
pp. 1234
Author(s):  
Dao-Bin TANG ◽  
Jian-Gang AN ◽  
Yi DING ◽  
Hui BAI ◽  
Kai ZHANG ◽  
...  

2021 ◽  
Vol 22 (9) ◽  
pp. 4826
Author(s):  
Yang Gao ◽  
Zhonghou Tang ◽  
Houqiang Xia ◽  
Minfei Sheng ◽  
Ming Liu ◽  
...  

A field experiment was established to study sweet potato growth, starch dynamic accumulation, key enzymes and gene transcription in the sucrose-to-starch conversion and their relationships under six K2O rates using Ningzishu 1 (sensitive to low-K) and Xushu 32 (tolerant to low-K). The results indicated that K application significantly improved the biomass accumulation of plant and storage root, although treatments at high levels of K, i.e., 300–375 kg K2O ha−1, significantly decreased plant biomass and storage root yield. Compared with the no-K treatment, K application enhanced the biomass accumulation of plant and storage root by 3–47% and 13–45%, respectively, through promoting the biomass accumulation rate. Additionally, K application also enhanced the photosynthetic capacity of sweet potato. In this study, low stomatal conductance and net photosynthetic rate (Pn) accompanied with decreased intercellular CO2 concentration were observed in the no-K treatment at 35 DAT, indicating that Pn was reduced mainly due to stomatal limitation; at 55 DAT, reduced Pn in the no-K treatment was caused by non-stomatal factors. Compared with the no-K treatment, the content of sucrose, amylose and amylopectin decreased by 9–34%, 9–23% and 6–19%, respectively, but starch accumulation increased by 11–21% under K supply. The activities of sucrose synthetase (SuSy), adenosine-diphosphate-glucose pyrophosphorylase (AGPase), starch synthase (SSS) and the transcription of Susy, AGP, SSS34 and SSS67 were enhanced by K application and had positive relationships with starch accumulation. Therefore, K application promoted starch accumulation and storage root yield through regulating the activities and genes transcription of SuSy, AGPase and SSS in the sucrose-to-starch conversion.


2010 ◽  
Vol 61 (5) ◽  
pp. 1337-1349 ◽  
Author(s):  
Seol Ah Noh ◽  
Haeng-Soon Lee ◽  
Eun Joo Huh ◽  
Gyung Hye Huh ◽  
Kyung-Hee Paek ◽  
...  
Keyword(s):  

Author(s):  
Xiaoyu Su ◽  
Zhenbao Jia ◽  
Fei Tao ◽  
Jiamin Shen ◽  
Jingwen Xu ◽  
...  

Phytochemical-enriched edible greens, sweet potato leaves (Ipomoea batatas L.), have become popular due to potential health benefits. However, the phytochemical contents in sweet potato leaves and their subsequent change over harvest stages and growth condition are mostly unknown. In this study, the anthocyanin profile and content in leaves of four sweet potato cultivars, i.e., white-skinned and white-fleshed Bonita, red-skinned and orange-fleshed Beauregard, red-skinned and white-fleshed Murasaki and purple-skinned and purple-fleshed P40, were evaluated. Fourteen anthocyanins were isolated and identified by HPLC-MSI/MS. The most abundant was cyanidin 3-caffeoyl-p-hydroxybenzoyl sophoroside-5-glucoside, which comprised up to 20% of the total anthocyanins. Of the young leaves (1st and 2nd slip cuttings), Bonita contained the highest anthocyanin content followed by P40. Of the mature leaves (vine stage), Beauregard had the greatest anthocyanin (592.5 ± 86.4 mg/kg DW) and total phenolic (52.2 ± 3 mg GAE/g DW). It should be noted that the lowest anthocyanin and total phenolic content of shoots were found in P40, while tubers of P40 contain the highest content of each. Furthermore, the increase in leaf anthocyanin content over the growth stages that was observed in three of the cultivars but not in P40. No significant difference of anthocyanin content was found in Beauregard leaves grown in the high tunnels when compared with that in the open field. This study demonstrated for the first time that anthocyanin levels were significantly changed in response to various growth stages but not high tunnel condition, indicating that the effect of anthocyanin biosynthesis in sweet potato leaves is highly variable and genotype specific.


2020 ◽  
Vol 15 (2) ◽  
pp. 187-202
Author(s):  
Ba Aliou ◽  
C. Gemenet Dorcus ◽  
Onguso Justus ◽  
Diouf Diaga ◽  
Mendes Thiago ◽  
...  

2002 ◽  
Vol 127 (2) ◽  
pp. 178-183 ◽  
Author(s):  
Makoto Nakatani ◽  
Masaru Tanaka ◽  
Masaru Yoshinaga

A late-storage root-forming mutant (`KM95-A68') of sweetpotato [Ipomoea batatas (L.) Poir.] was characterized to clarify the genetic and physiological mechanisms of storage root formation. This mutant originated from a somaclonal mutation of `Kokei No. 14'. Storage roots of `KM95-A68' are rare and, when formed, develop 2 or 3 weeks later than those of `Kokei No. 14' from which it originated. Morphological characteristics of the canopy and leaf photosynthetic rates of `KM95-A68' were similar to those of `Kokei No. 14'. No apparent differences were observed in the anatomy of root cross sections of `KM95-A68' and `Kokei No. 14'. An apparent increase in the root zeatin riboside (ZR) levels were observed in `Kokei No. 14' at storage root formation. Root ZR levels differed between `Kokei No. 14' and `KM95-A68'. The onset of increase in root ZR levels was delayed by 2 or 3 weeks in `KM95-A68' in comparison to `Kokei No. 14'. Maximum root ZR levels in `Kokei No. 14' were 2.2 times higher in comparison to `KM95-A68'. This appeared to be a factor in delayed storage root formation of `KM95-A68'. Results of reciprocal grafts of `KM95-A68' and `Kokei No. 14' indicated that the late storage root-forming characteristic of `KM95-A68' is a characteristic that arises from the root itself.


2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Hongxia Wang ◽  
Jun Yang ◽  
Min Zhang ◽  
Weijuan Fan ◽  
Nurit Firon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document