scholarly journals A Brief Survey of Recent Edge-Preserving Smoothing Algorithms on Digital Images

2021 ◽  
Author(s):  
ANDO Shizutoshi

Edge preserving filters preserve the edges and its information while blurring an image. In other words they are used to smooth an image, while reducing the edge blurring effects across the edge like halos, phantom etc. They are nonlinear in nature. Exam?ples are bilateral filter, anisotropic diffusion filter, guided filter, trilateral filter etc. Hence these family of filters are very useful in reducing the noise in an image making it very demanding in computer vision and computational photography applications like de?noising, video abstraction, demosaicing, optical-flow estimation, stereo matching, tone mapping, style transfer, relighting etc. This paper provides a concrete introduction to edge preserving filters starting from the heat diffusion equation in olden to recent eras, an overview of its numerous applications, as well as mathematical analysis, various efficient and optimized ways of implementation and their interrelationships, keeping focus on preserving the boundaries, spikes and canyons in presence of noise. Furthermore it provides a realistic notion for efficient implementation with a research scope for hardware realization for further acceleration.

2021 ◽  
Vol 23 (06) ◽  
pp. 1244-1251
Author(s):  
K. Sivakumar ◽  
◽  
Sakthiraam. B ◽  
Santosh Snehal. V ◽  
Yogashivasankarri. S ◽  
...  

Preserving the edges and information is one of the main purposes of edge-preserving filters. That is, they’re employed to smooth a picture, and minimize halos, phantoms, and edge blur over the edge. They have a nonlinear relationship between one thing and another. Bilateral filters, anisotropic diffusion filters, directed filters, and trilateral filters are all types of example filters. The filter family may be used in a wide range of image processing tasks, such as denoising, video abstraction, demosaicing, optical flow estimation, stereo matching, tone mapping, style transfer, relighting, and others. The paper gives a clear description of edge-preserving filters, from the heat diffusion equation in ancient times to the present, explaining their numerous applications and detailing their numerous uses. Additionally, mathematical analysis is included, as well as efficient and optimized implementations. The focus is on preserving the boundaries, spikes, and canyons, and the information is given clearly and in detail. Finally, it offers a realistic representation of efficient implementation, as well as a comprehensive research scope for future hardware implementation.


2021 ◽  
Vol 10 (1) ◽  
pp. 111-117
Author(s):  
Rostam Affendi Hamzah ◽  
A. F. Kadmin ◽  
S. F. A. Gani ◽  
K. A. Aziz ◽  
T. M. F. T. Wook ◽  
...  

This article presents a study on edge preserving filters in image matching which comprises a development of stereo matching algorithm using two edge preserving filters. Fundamentally, the framework is reconstructed by several sequential processes. The output of these processes is a disparity map or depth map. The corresponding points between two images require accurate matching to make accurate depth map estimation. Thus, the propose work in this article utilizes sum of squared differences (SSD) with dual edge preserving filters. These filters are used due to edge preserved properties and to increase the accuracy. The median filter (MF) and bilateral filter (BF) will be utilized. The SSD produces preliminary results with low noise and the edge preserving filters reduce noise on the low texture regions with edge preserving properties. Based on the experimental analysis using the standard benchmarking evaluation system from the Middlebury, the disparity map produced is 6.65% for all error pixels. It shows an accurate edge preserved properties on the disparity maps. To make the proposed work more reliable with current available methods, the quantitative measurement has been made to compare with other existing methods and it displays the proposed work in this article perform much better.


Author(s):  
Rostam Affendi Hamzah ◽  
M. G. Yeou Wei ◽  
N. Syahrim Nik Anwar

This paper proposes a new stereo matching algorithm which uses local-based method. The Sum of Absolute Differences (SAD) algorithm produces accurate result on the disparity map for the textured regions. However, this algorithm is sensitive to low texture areas and high noise on images with high different brightness and contrast. To get over these problems, the proposed algorithm utilizes SAD algorithm with RGB color channels differences and combination of gradient matching to improve the accuracy on the images with high brightness and contrast. Additionally, an edge-preserving filter is used at the second stage which is known as Bilateral Filter (BF). The BF filter is capable to work with the low texture areas and to reduce the noise and sharpen the images. Additionally, BF is strong  against the  distortions due to high brightness and contrast. The proposed work in this paper produces accurate results and performs much better compared with some established algorithms. This comparison is based on the standard quantitative measurements using the stereo benchmarking evaluation from the Middlebury.


2016 ◽  
Vol 138 (2) ◽  
Author(s):  
Elbara Ziade ◽  
Jia Yang ◽  
Gordie Brummer ◽  
Denis Nothern ◽  
Theodore Moustaks ◽  
...  

Frequency domain thermoreflectance (FDTR) is used to create quantitative maps of thermal conductivity and thickness for a thinning gallium nitride (GaN) film on silicon carbide (SiC). GaN was grown by molecular beam epitaxy on a 4H-SiC substrate with a gradient in the film thickness found near the edge of the chip. The sample was then coated with a 5 nm nickel adhesion layer and a 85 nm gold transducer layer for the FDTR measurement. A piezo stage raster scans the sample to create phase images at different frequencies. For each pixel, a periodically modulated continuous-wave laser (the red pump beam) is focused to a Gaussian spot, less than 2 um in diameter, to locally heat the sample, while a second beam (the green probe beam) monitors the surface temperature through a proportional change in the reflectivity of gold. The pump beam is modulated simultaneously at six frequencies and the thermal conductivity and thickness of the GaN film are extracted by minimizing the error between the measured probe phase lag at each frequency and an analytical solution to the heat diffusion equation in a multilayer stack of materials. A scanning electron microscope image verifies the thinning GaN. We mark the imaged area with a red box. A schematic of the GaN sample in our measurement system is shown in the top right corner, along with the two fitting properties highlighted with a red box. We show the six phase images and the two obtained property maps: thickness and thermal conductivity of the GaN. Our results indicate a thickness dependent thermal conductivity of GaN, which has implications of thermal management in GaN-based high electron mobility transistors.


2021 ◽  
Vol 11 (04) ◽  
pp. 1-11
Author(s):  
Wanwan Li

In mechanical engineering educations, simulating fluid thermodynamics is rather helpful for students to understand the fluid’s natural behaviors. However, rendering both high-quality and realtime simulations for fluid dynamics are rather challenging tasks due to their intensive computations. So, in order to speed up the simulations, we have taken advantage of GPU acceleration techniques to simulate interactive fluid thermodynamics in real-time. In this paper, we present an elegant, basic, but practical OpenGL/SL framework for fluid simulation with a heat map rendering. By solving Navier-Stokes equations coupled with the heat diffusion equation, we validate our framework through some real-case studies of the smoke-like fluid rendering such as their interactions with moving obstacles and their heat diffusion effects. As shown in Fig. 1, a group of experimental results demonstrates that our GPU-accelerated solver of Navier-Stokes equations with heat transfer could give the observers impressive real-time and realistic rendering results.


1986 ◽  
Vol 1 (2) ◽  
pp. 368-381 ◽  
Author(s):  
L.M. Scarfone ◽  
J.D. Chlipala

Pulses of Q-switched Nd-YAG radiation have been used to remove polysilicon target links during the implementation of laser programmable redundancy in the fabrication of silicon memory. The link is encapsulated by transparent dielectric films that give rise to important optical interference effects modifying the laser flux absorbed by the link and the silicon substrate. Estimates of these effects are made on the basis of classical plane-wave procedures. Thermal evolution of the composite structure is described in terms of a finite-difference form of the three-dimensional heat diffusion equation with a heat generation rate having a Gaussian spatial distribution of intensity and temporal shapes characteristic of commercial lasers. Temperature-dependent thermal diffusivity and melting of the polysilicon link are included in the computer modeling. The calculations account for the discontinuous change in the link absorption coefficient at the transition temperature. A threshold temperature and corresponding pressure, sufficiently high to rupture the dielectric above the link and initiate the removal process, are estimated by treating the molten link as a hard-sphere fluid. Numerical results are presented in the form of three-dimensional temperature distributions for 1.06 and 0.53 μm radiation with pulse energies 3.5 and 0.15μJ, respectively. Similarities and differences between heating effects produced by long (190 ns FWHM/740 ns duration) and short (35 ns FWHM/220 ns duration) pulses are pointed out.


2010 ◽  
Vol 14 (2) ◽  
pp. 291-316 ◽  
Author(s):  
Jordan Hristov

The fractional (half-time) sub-model of the heat diffusion equation, known as Dirac-like evolution diffusion equation has been solved by the heat-balance integral method and a parabolic profile with unspecified exponent. The fractional heat-balance integral method has been tested with two classic examples: fixed temperature and fixed flux at the boundary. The heat-balance technique allows easily the convolution integral of the fractional half-time derivative to be solved as a convolution of the time-independent approximating function. The fractional sub-model provides an artificial boundary condition at the boundary that closes the set of the equations required to express all parameters of the approximating profile as function of the thermal layer depth. This allows the exponent of the parabolic profile to be defined by a straightforward manner. The elegant solution performed by the fractional heat-balance integral method has been analyzed and the main efforts have been oriented towards the evaluation of fractional (half-time) derivatives by use of approximate profile across the penetration layer.


2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Alfredo dos Santos Maia Neto ◽  
Marcelo Gonçalves de Souza ◽  
Edson Alves Figueira Júnior ◽  
Valério Luiz Borges ◽  
Solidônio Rodrigues de Carvalho

This work presents a 3D computational/mathematical model to solve the heat diffusion equation with phase change, considering metal addition, complex geometry, and thermal properties varying with temperature. The finite volume method was used and the computational code was implemented in C++, using a Borland compiler. Experimental tests considering workpieces of stainless steel AISI 304 were carried out for validation of the thermal model. Inverse techniques based on Golden Section method were used to estimate the heat transfer rate to the workpieces. Experimental temperatures were measured using thermocouples type J—in a total of 07 (seven)—all connected to the welded workpiece and the Agilent 34970A data logger. The workpieces were chamfered in a 45° V-groove in which liquid metal was added on only one weld pass. An innovation presented in this work when compared to other works in scientific literature was the geometry of the weld pool. The good relation between experimental and simulated data confirmed the quality and robustness of the thermal model proposed in this work.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
A. Bhattacharya ◽  
J. K. Dutt ◽  
R. K. Pandey

This paper mainly reports stability investigations of rotors supported on fluid film journal bearings possessing multilocational slip-no-slip zones at the bush–film interface. The coupled solution of governing equations (Reynolds equation, energy equation, heat diffusion equation, lubricant rheological relation, and thermal boundary conditions) has been used to find pressure distributions in the lubricating film followed by evaluation of bearing coefficients. These coefficients have been used to determine stability limit speed (SLS) of the system and its robustness for both short (nearly inflexible) and long (flexible) rotors. Numerical simulations show that the pattern of pressure distribution with multiple slip-no-slip zones is similar to that obtained for multilobe bearings, resulting in substantial improvement of rotor–bearing stability irrespective of eccentricity ratio. A reduction in friction force (up to Sommerfeld number 1.8) and an increase in SLS and robustness compared to conventional bearings are observed when used with short rotors. Typically, up to six pairs of slip-no-slip zones improve SLS of the rotor–shaft system and robustness for short rotors, although more pairs deteriorate both. However, for long rotors, where dynamic rotor forces also act, these bearings provide marginal improvement in stability and robustness only for a small range of slip length.


Author(s):  
Kazi M. Rahman ◽  
M. Ruhul Amin ◽  
Ahsan Mian

In the field of additive manufacturing process, laser cladding is widely considered due to its cost effectiveness, small localized heat generation and full fusion to metals. Introducing nanoparticles with cladding metals produces metal matrix nanocomposites which in turn improves the material characteristics of the clad layer. The strength of the laser cladded reinforced metal matrix composite are dependent on the location and concentration of the nanoparticles infused in metals. The governing equations that control the fluid flow are standard incompressible Navier-Stokes and heat diffusion equation whereas the Euler-Lagrange approach has been considered for particle tracking. The mathematical formulation for solidification is adopted based on enthalpy porosity method. Liquid titanium has been considered as the initial condition where particle distribution has been assumed uniform throughout the geometry. During the solidification process of liquid titanium, particle flow and distribution has been observed until the entire geometry solidified. A numerical model implemented in a commercial software based on control volume method has been developed that allows to simulate the fluid flow during solidification as well as tracking nanoparticles during this process. The influence of the free surface of the melt pool has a high importance on the fluid flow as well as the influence of pure natural convection. Thus both buoyancy and Marangoni convection have been considered in terms of fluid flow in the molten region. A detailed parametric study has been conducted by changing the Marangoni number, convection heat transfer coefficient, constant temperature below the melting point of titanium and insulated boundary conditions to analyze the behavior of the nanoparticle movement. With the change in Marangoni number and solidification time, a significant change in particle distribution has been observed. The influence of increase in Marangoni number results in a higher concentration of nanoparticles in some portions of the geometry and lack of nanoparticles in rest of the geometry. The high concentration of nanoparticles decrease with a decrease in Marangoni number. Furthermore, an increase in the rate of solidification time limits the nanoparticle movement from its original position which results in different distribution patterns with respect to the solidification time.


Sign in / Sign up

Export Citation Format

Share Document