scholarly journals To study the selective potentiality and anti-tumor activity of CAP in oral cancer treatment

2021 ◽  
Author(s):  
Swapnil Dey ◽  
Rachana Phadke ◽  
Dattatreya Mukherjee ◽  
Debraj Mukhopadhyay

Oral Cancer is one of the leading causes of death in India, specifically in its Northeastern region. India holds about one third cases of the total oral cancer in the world. According to a report (2018), India holds 1,19,992 new cases of oral cancer and 72,616 deaths. Current approaches in cancer treatment mainly include surgery, chemotherapy and radiation therapy. These treatments often give a morbid outcome and reduce survival rate. This is mainly due to their non-selective nature to kill the tumor cells along with the normal cells. Recently the potential of Cold Atmospheric Plasma (CAP) in cancer treatment is gaining great interest among scientists and researchers. This is mainly due to the enhanced selective nature of the CAP in targeting and killing the tumor cells without affecting the surrounding tissue and causing minimal side effects. Reactive Oxygen and Nitrogen species (RONS) are the main contributors of the efficacy of CAP in killing cancer cells. Although many attempts have been made to understand the underlying mechanism of CAP in cancer treatment, there is a lack of detailed studies with respect to different treatment conditions. The use of CAP can be a potential innovative therapy in the upcoming days and more clinical trials should be encouraged to prove its efficacy and relevance in clinical purpose.

2020 ◽  
Author(s):  
busenur Aslanoglu ◽  
Ilya Yakavets ◽  
Vladimir Zorin ◽  
Henri-Pierre Lassalle ◽  
Francesca Ingrosso ◽  
...  

Computational tools have been used to study the photophysical and photochemical features of photosensitizers in photodynamic therapy (PDT) –a minimally invasive, less aggressive alternative for cancer treatment. PDT is mainly based by the activation of molecular oxygen through the action of a photoexcited sensitizer (photosensitizer). Temoporfin, widely known as mTHPC, is a second-generation photosensitizer, which produces the cytotoxic singlet oxygen when irradiated with visible light and hence destroys tumor cells. However, the bioavailability of the mostly hydrophobic photosensitizer, and hence its incorporation into the cells, is fundamental to achieve the desired effect on malignant tissues by PDT. In this study, we focus on the optical properties of the temoporfin chromophore in different environments –in <i>vacuo</i>, in solution, encapsulated in drug delivery agents, namely cyclodextrin, and interacting with a lipid bilayer.


Author(s):  
Nivedita Bhardwaj ◽  
Nancy Tripathi ◽  
Bharat Goel ◽  
Shreyans K. Jain

: During cancer progression, the unrestricted proliferation of cells is supported by the impaired cell death response provoked by certain oncogenes. Both autophagy and apoptosis are the signaling pathways of cell death, which are targeted for cancer treatment. Defects in apoptosis result in reduced cell death and ultimately tumor progression. The tumor cells lacking apoptosis phenomena are killed by ROS- mediated autophagy. The autophagic programmed cell death requires apoptosis protein for inhibiting tumor growth; thus, the interconnection between these two pathways determines the fate of a cell. The cross-regulation of autophagy and apoptosis is an important aspect to modulate autophagy, apoptosis and to sensibilise apoptosis-resistant tumor cells under metabolic stress and might be a rational approach for drug designing strategy for the treatment of cancer. Numerous proteins involved in autophagy have been investigated as the druggable target for anticancer therapy. Several compounds of natural origin have been reported, to control autophagy activity through the PI3K/Akt/mTOR key pathway. Diosgenin, a steroidal sapogenin has emerged as a potential candidate for cancer treatment. It induces ROS-mediated autophagy, inhibits PI3K/Akt/mTOR pathway, and produces cytotoxicity selectively in cancer cells. This review aims to focus on optimal strategies using diosgenin to induce apoptosis by modulating the pathways involved in autophagy regulation and its potential implication in the treatment of various cancer. The discussion has been extended to the medicinal chemistry of semi-synthetic derivatives of diosgenin exhibiting anticancer activity.


2018 ◽  
Vol 18 (6) ◽  
pp. 784-804 ◽  
Author(s):  
Georg Bauer

Background: Application of cold atmospheric plasma to medium generates “plasma-activated medium” that induces apoptosis selectively in tumor cells and that has an antitumor effect in vivo. The underlying mechanisms are not well understood. Objective: Elucidation of potential chemical interactions within plasma-activated medium and of reactions of medium components with specific target structures of tumor cells should allow to define the active principle in plasma activated medium. Methods: Established knowledge of intercellular apoptosis-inducing reactive oxygen/nitrogen species-dependent signaling and its control by membrane-associated catalase and SOD was reviewed. Model experiments using extracellular singlet oxygen were analyzed with respect to catalase inactivation and their relevance for the antitumor action of cold atmospheric plasma. Potential interactions of this tumor cell-specific control system with components of plasma-activated medium or its reaction products were discussed within the scope of the reviewed signaling principles. Results: None of the long-lived species found in plasma-activated medium, such as nitrite and H2O2, nor OCl- or .NO seemed to have the potential to interfere with catalase-dependent control of apoptosis-inducing signaling of tumor cells when acting alone. However, the combination of H2O2 and nitrite might generate peroxynitrite. The protonation of peroxnitrite to peroxynitrous acid allows for the generation of hydroxyl radicals that react with H2O2, leading to the formation of hydroperoxide radicals. These allow for singlet oxygen generation and inactivation of membrane-associated catalase through an autoamplificatory mechanism, followed by intercellular apoptosis-inducing signaling. Conclusion: Nitrite and H2O2 in plasma-activated medium establish singlet oxygen-dependent interference selectively with the control system of tumor cells.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2021 ◽  
pp. 1-9
Author(s):  
Parvaneh Yazdanpanah ◽  
Ali Alavianmehr ◽  
Abbas Ghaderi ◽  
Ahmad Monabati ◽  
Mehdi Montazer ◽  
...  

BACKGROUND: Block of programmed cell death protein 1 (PD-1) interaction with its ligand, PD-L1, enhances anti-tumor activity. OBJECTIVES: We aimed to assess the association between PD-L1 expression in tumor cells and CD8+ tumor infiltrating T cells (TILs) as well as soluble (s)PD-L1 serum levels in patients with triple negative breast cancer (TNBC) compared to triple positive (TPBC). METHODS: A total of 113 tumor sections and 133 serum samples were available from 144 patients with breast cancer (72 TNBC and 72 TPBC). Dual immunohistochemistry staining was applied to determine differential PD-L1 expression in tumor cells and CD8+ TILs. Soluble PD-L1 serum levels were also evaluated in patients compared to 40 healthy women by ELISA method. RESULTS: Despite TPBC patients which were mostly grades 1/2, TNBC patients were grade 3 (72% versus 66.7%, P < 0.001). Most of the TNBC patients were stages I/II, whereas most of the TPBC patients were stages III/IV (57.3% versus 68.3%,P = 0.005). There was no difference in tumor size and metastasis between TNBC and TPBC patients, although the number of involved lymph nodes was significantly more in TPBC patients (P = 0.0012). PD-L1 expression was detected in 11.5% of samples mostly in TNBC subtype and was associated with advanced grades (P = 0.039). There was no relationship between PD-L1 expression and tumor stage. PD-L1 expression in CD8+ TILs was nonsignificantly higher than tumor cells. Serum levels of sPD-L1 showed no difference between patients and healthy women. We found no correlation between PD-L1 expression in tumor lesions and serum levels of sPD-L1 in patients. CONCLUSION: PD-L1 expression was more detected in our patients with TNBC. It seems that, these patients who are resistant to standard chemotherapy regimens may get benefit from PD-L1 inhibition therapy and because of its low serum levels, sPD-L1 cannot interfere with this therapy.


2016 ◽  
Vol 127 (4) ◽  
pp. E124-E131 ◽  
Author(s):  
Nathan Handley ◽  
Jacob Eide ◽  
Randall Taylor ◽  
Beverly Wuertz ◽  
Patrick Gaffney ◽  
...  
Keyword(s):  

2012 ◽  
Vol 40 (2) ◽  
pp. 103-104 ◽  
Author(s):  
Hans-Robert Metelmann ◽  
Peter Hyckel ◽  
Fred Podmelle

Author(s):  
Hyea Jin Gil ◽  
Emilia M. Pinto ◽  
Andrew M. Davidoff ◽  
Gerard P. Zambetti ◽  
Jun Yang ◽  
...  

2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Dayun Yan ◽  
Wenjun Xu ◽  
Xiaoliang Yao ◽  
Li Lin ◽  
Jonathan H. Sherman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document