Targeting Protective Catalase of Tumor Cells with Cold Atmospheric Plasma- Activated Medium (PAM)

2018 ◽  
Vol 18 (6) ◽  
pp. 784-804 ◽  
Author(s):  
Georg Bauer

Background: Application of cold atmospheric plasma to medium generates “plasma-activated medium” that induces apoptosis selectively in tumor cells and that has an antitumor effect in vivo. The underlying mechanisms are not well understood. Objective: Elucidation of potential chemical interactions within plasma-activated medium and of reactions of medium components with specific target structures of tumor cells should allow to define the active principle in plasma activated medium. Methods: Established knowledge of intercellular apoptosis-inducing reactive oxygen/nitrogen species-dependent signaling and its control by membrane-associated catalase and SOD was reviewed. Model experiments using extracellular singlet oxygen were analyzed with respect to catalase inactivation and their relevance for the antitumor action of cold atmospheric plasma. Potential interactions of this tumor cell-specific control system with components of plasma-activated medium or its reaction products were discussed within the scope of the reviewed signaling principles. Results: None of the long-lived species found in plasma-activated medium, such as nitrite and H2O2, nor OCl- or .NO seemed to have the potential to interfere with catalase-dependent control of apoptosis-inducing signaling of tumor cells when acting alone. However, the combination of H2O2 and nitrite might generate peroxynitrite. The protonation of peroxnitrite to peroxynitrous acid allows for the generation of hydroxyl radicals that react with H2O2, leading to the formation of hydroperoxide radicals. These allow for singlet oxygen generation and inactivation of membrane-associated catalase through an autoamplificatory mechanism, followed by intercellular apoptosis-inducing signaling. Conclusion: Nitrite and H2O2 in plasma-activated medium establish singlet oxygen-dependent interference selectively with the control system of tumor cells.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Georg Bauer ◽  
Dominika Sersenová ◽  
David B. Graves ◽  
Zdenko Machala

Abstract Treatment of tumor cells with cold atmospheric plasma (CAP) or with plasma-activated medium (PAM) leads to a biochemical imprint on these cells. This imprint is mediated by primary singlet oxygen, which is mainly generated through the interaction between CAP-derived H2O2 and NO2−. This imprint is induced with a low efficiency as local inactivation of a few membrane-associated catalase molecules. As sustained generation of secondary singlet oxygen by the tumor cells is activated at the site of the imprint, a rapid bystander effect-like spreading of secondary singlet oxygen generation and catalase inactivation within the cell population is thus induced. This highly dynamic process is essentially driven by NOX1 and NOS of the tumor cells, and finally leads to intercellular RONS-driven apoptosis induction. This dynamic process can be studied by kinetic analysis, combined with the use of specific inhibitors at defined time intervals. Alternatively, it can be demonstrated and quantified by transfer experiments, where pretreated cells are mixed with untreated cells and bystander signaling is determined. These studies allow to conclude that the specific response of tumor cells to generate secondary singlet oxygen is the essential motor for their self-destruction, after a singlet oxygen-mediated triggering process by CAP or PAM.


2018 ◽  
Vol 18 (6) ◽  
pp. 769-775 ◽  
Author(s):  
Dayun Yan ◽  
Jonathan H. Sherman ◽  
Michael Keidar

Background: Over the past five years, the cold atmospheric plasma-activated solutions (PAS) have shown their promissing application in cancer treatment. Similar as the common direct cold plasma treatment, PAS shows a selective anti-cancer capacity in vitro and in vivo. However, different from the direct cold atmospheric plasma (CAP) treatment, PAS can be stored for a long time and can be used without dependence on a CAP device. The research on PAS is gradually becoming a hot topic in plasma medicine. Objectives: In this review, we gave a concise but comprehensive summary on key topics about PAS including the development, current status, as well as the main conclusions about the anti-cancer mechanism achieved in past years. The approaches to make strong and stable PAS are also summarized.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii119-ii119
Author(s):  
Manish Adhikari ◽  
Vikas Soni ◽  
Simonyan Hayk ◽  
Colin Young ◽  
Jonathan Sherman ◽  
...  

Abstract INTRODUCTION A primary limitation in anti-cancer therapy is the resistance of cancer cells to chemotherapeutic drugs. However, combination therapy may be an effective approach for reducing drug derived toxicity and evading drug resistance, resulting in improved clinical treatment of cancer. Our prior work demonstrated effective treatment of glioblastoma (GBM) with cold atmospheric plasma (CAP) technology with minimal effect to normal cells. Consequently, CAP may serve as a strong candidate for combination therapy with the classical antineoplastic alkylating agent Temozolomide (TMZ) to treat GBM. OBJECTIVES To determine the in vivo co-efficacy of CAP and TMZ to “sensitize” GBM. METHODS An in vivo study was performed using the CAP jet device (He-gas) to determine the effect of combined CAP–TMZ treatment. U87MG-luc glioblastoma cells were implanted intracranially in athymic nude NU(NCr)-Foxn1nu/immunodeficient mice. He-CAP (or control He alone) was non-invasively applied over the skin for 60sec to developed tumors on the first day of the treatment followed with 6.5 mg/kg TMZ or vehicle control treatment for 5 days for two weeks (n=5/group). In vivo bioluminescence imaging was used to monitor tumor volume on the 6th, 9th and 13th treatment day. RESULTS In vivo bioluminescence imaging revealed a marked 8.0±3.2 fold increase in tumor volume in control animals (He-vehicle). Treatment with He-TMZ (6.7±2.5 fold) or CAP-vehicle (4.8±1.7 fold) in isolation had minimal effect in preventing tumor growth. However, combined CAP-TMZ co-treatment virtually prevented increases in tumor volume over 2 weeks (1.8±0.2 fold). CONCLUSIONS Collectively, these findings indicate an effective synergistic treatment method for GBM combining CAP with TMZ. Future investigations look to incorporate radiation into the treatment regimen as well as primary GBM cell models.


2020 ◽  
Vol 17 (3) ◽  
pp. 851-863 ◽  
Author(s):  
Rui He ◽  
Qin Li ◽  
Wenqi Shen ◽  
Tao Wang ◽  
Huijuan Lu ◽  
...  

2018 ◽  
Vol 8 (4) ◽  
pp. 379-401 ◽  
Author(s):  
Constance Duchesne ◽  
Nadira Frescaline ◽  
Jean-Jacques Lataillade ◽  
Antoine Rousseau

Nanomaterials ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 1505 ◽  
Author(s):  
Wang Lai Hui ◽  
Vittoria Perrotti ◽  
Flavia Iaculli ◽  
Adriano Piattelli ◽  
Alessandro Quaranta

In recent years, cold atmospheric plasma (CAP) technologies have received increasing attention in the field of biomedical applications. The aim of this article is to review the currently available literature to provide an overview of the scientific principles of CAP application, its features, functions, and its applications in systemic and oral diseases, with a specific focus on its potential in implantology. In this narrative review, PubMed, Medline, and Scopus databases were searched using key words like “cold atmospheric plasma”, “argon plasma”, “helium plasma”, “air plasma”, “dental implants”, “implantology”, “peri-implantitis”, “decontamination”. In vitro studies demonstrated CAP’s potential to enhance surface colonization and osteoblast activity and to accelerate mineralization, as well as to determine a clean surface with cell growth comparable to the sterile control on both titanium and zirconia surfaces. The effect of CAP on biofilm removal was revealed in comparative studies to the currently available decontamination modalities (laser, air abrasion, and chlorhexidine). The combination of mechanical treatments and CAP resulted in synergistic antimicrobial effects and surface improvement, indicating that it may play a central role in surface “rejuvenation” and offer a novel approach for the treatment of peri-implantitis. It is noteworthy that the CAP conditioning of implant surfaces leads to an improvement in osseointegration in in vivo animal studies. To the best of our knowledge, this is the first review of the literature providing a summary of the current state of the art of this emerging field in implantology and it could represent a point of reference for basic researchers and clinicians interested in approaching and testing new technologies.


2020 ◽  
Vol 17-18 ◽  
pp. 100098 ◽  
Author(s):  
Mohamed Fofana ◽  
Julio Buñay ◽  
Florian Judée ◽  
Silvère Baron ◽  
Sébastien Menecier ◽  
...  

2013 ◽  
Vol 1 (2) ◽  
pp. 35-39 ◽  
Author(s):  
Y.-F. Li ◽  
D. Taylor ◽  
J.L. Zimmermann ◽  
W. Bunk ◽  
R. Monetti ◽  
...  

PLoS ONE ◽  
2015 ◽  
Vol 10 (3) ◽  
pp. e0120041 ◽  
Author(s):  
Stephanie Arndt ◽  
Michael Landthaler ◽  
Julia L. Zimmermann ◽  
Petra Unger ◽  
Eva Wacker ◽  
...  

2020 ◽  
Vol 5 (10) ◽  

Cold atmospheric plasma (CAP), a room temperate ionised gas, known as the fourth state of matter is an ionised gas and can be produced from argon, helium, nitrogen, oxygen or air at atmospheric pressure and low temperatures. CAP has become a new promising way for many biomedical applications, such as disinfection, cancer treatment, root canal treatment, wound healing, and other medical applications. Among these applications, investigations of plasma for skin wound healing have gained huge success both in vitro and in vivo experiments without any known significant negative effects on healthy tissues. The development of CAP devices has led to novel therapeutic strategies in wound healing, tissue regeneration and skin infection management. CAP consists of a mixture of multitude of active components such as charged particles, electric field, UV radiation, and reactive gas species which can act synergistically. CAP has lately been recognized as an alternative approach in medicine for sterilization of wounds by its antiseptic effects and promotion of wound healing by stimulation of cell proliferation and migration of wound related skin cells. With respect to CAP applications in medicine, this review focuses particularly on the potential of CAP and the known molecular basis for this action. We summarize the available literature on the plasma devices developed for wound healing, the current in vivo and in vitro use of CAP, and the mechanism behind it as well as the biosafety issues.


Sign in / Sign up

Export Citation Format

Share Document