scholarly journals A new family of markers to characterize the human γδ T-cell lineage

2019 ◽  
Author(s):  
Shahan Mamoor

Prospective isolation of γδ T lymphocytes demands a comprehensive description of the molecules that distinguish T cells with γδ T-cell receptors (TCRs) (γδ T cells, or Tγδ) from those with αβTCRs (Tαβ). Here I describe some of the most differentially expressed genes in the γδ T cell when compared to the developmentally proximal but lineage-distinct Tαβ CD4+ and CD8+ lymphocytes. These genes encode cluster of differentiation markers, transcription factors, cell surface receptors and non-coding RNAs. As hematopoietic stem cells (HSCs) have been prospectively isolated based on the analysis of differentially expressed genes (1), any combination of these molecules may potentially be used to isolate Tγδ, perhaps even independent of the γδTCR. This description of the most striking identifying features of the Tγδ will be a resource for the isolation of a multi-potent common γδ T-cell progenitor.

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3245-3245
Author(s):  
Irma Airoldi ◽  
Ignazia Prigione ◽  
Alice Bertaina ◽  
Claudia Cocco ◽  
Daria Pagliara ◽  
...  

Abstract HLA-haploidentical hematopoietic stem cell transplantation (HSCT) using CD34+ selected cells is a widely used procedure, which, however, is complicated by delayed immune reconstitution. We recently developed a new method of graft manipulation based on the physical removal of αβ+ T cells and CD19+ B cells, which permits to leave mature natural killer (NK) cells and γδ+ T cells in the graft. These cells can exert a graft-versus-leukemia (GvL) effect and reduce the risk of infection. In particular, unconventional γδ T cells play a critical role in both innate and adaptive immunity and exert HLA-unrestricted cytotoxicity against both solid and hematological tumors, thus potentially acting as beneficial effector cells in transplanted patients. Moreover, such grafts may limit the risk of graft-versus-host disease and prevent EBV-related lymphoproliferative disease. We performed phenotypic and functional studies on γδ T cells collected from 20 pediatric patients (pts, 13 males, 7 females, median age 10 years, range 6 months to 16 years) that received this type of allograft. Eighteen pts had acute leukemia and 2 non-malignant disorders. Ex vivo assays of peripheral blood γδ T cell phenotype and function were performed weekly until Hospital discharge and monthly until 6 months after HSCT. Phenotype of γδ T cells was analysed by flow cytometry. Analyses were performed on mononuclear cells labelled with mAb panels (CD3, CD45, pan-γδ, anti-Vδ1, -Vδ2, -Vγ9, CD45RO, CD45RA, CD27, CD16, CD56) allowing the identification of the main γδ+ T cell subsets, including Vδ1+ and Vδ2+ cells, naïve, central memory (CM), effector memory (EM) and terminally differentiated (TD) γδ T cells. Functional studies were performed using γδ T cells shortly after collection from pts, as well as after in vitro expansion with zoledronic acid and IL-2 for 10 days. Cytotoxic activity of γδ T cells was tested against primary leukemia cells, through CD107a degranulation assay and/or standard 51Cr-release assay. In the first 4 weeks after HSCT, T cells were consistently of the γδ subset (>90% of CD45+CD3+ cells); by contrast, αβ+ T cells gradually increased over time. In approximately half of the pts, the percentage of αβ T cells exceeded that of γδ T cells already starting from 30 days after HSCT. γδ T cells consisted of Vδ2+Vγ9+ and Vδ1+Vγ9+/- cells, and marginally of the Vδ1-Vδ2-Vγ9- population. Detailed phenotypic characterization of Vδ1+ and Vδ2+ γδ T cells revealed that, at day +20 after HSCT, 44% of Vδ1+ cells were CM (identified as CD45RO+CD27+ cells), 26% naïve (CD45RO-CD27+), 21.4% TD (CD45RO-CD27-) and 6.1% EM (CD45RO+CD27-). Similarly, 55.4% of Vδ2+ γδ T lymphocytes were CM, 9.8% naïve, 11.4% TD and 23.1% EM. The proportion of the different Vδ2+ γδ T cell subset did not change significantly over time, especially when comparing that present at day +20 after HSCT (time point, TP1) with that measured 30 days after the attainment of a 1:1 ratio of αβ-to- γδ T cells (TP2) (Figure 1, left panel). By contrast, by comparing TP1 and TP2, we found that Vδ1+ CM γδ T cells decreased and EM cells increased over time, while naïve or TD Vδ1+ γδ T cells did not change (Figure 1, right panel). In transplanted pts experiencing cytomegalovirus (CMV) reactivation, γδ T cells mostly consisted of Vδ1+ cells (mean 59.8% of γδ T cells), among which 49% were TD, 22.7% EM, 18.9% CM and 10.1% naïve. Noteworthy, in transplanted pts who did not have CMV reactivation, the main γδ T cells showed a Vδ2+ phenotype. Functional studies revealed that pt-derived γδ T cells consistently expanded in vitro after exposure to zoledronic acid and IL-2, the resulting Vγ9Vδ2 population expressing mainly an EM phenotype. These Vγ9Vδ2 cells exerted cytotoxic activities against primary allogeneic leukemia cells, especially when leukemia cells were pre-treated with zoledronic acid (Figure 2). More importantly, both Vδ1+ and Vδ2+ γδ T cells obtained from transplanted pts showed cytotoxic activity against primary leukemia cells, as assessed by CD107a degranulation assay. In conclusion, we provide the first phenotypic and functional characterization of γδ T cells, analyzed over time in children transplanted with grafts depleted of αβ+ T cells and of B lymphocytes. Our results support the concept that γδ T cells are important effector cells, which can be expanded and activated after exposure to bisphosphonates and IL-2 with the aim of improving their killing capacity against leukemia cells. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Vol 3 (21) ◽  
pp. 3436-3448 ◽  
Author(s):  
Lucas C. M. Arruda ◽  
Ahmed Gaballa ◽  
Michael Uhlin

Abstract Allogeneic hematopoietic stem cell transplantation (HSCT) using αβ T-/B-cell–depleted grafts recently emerged as a transplant strategy and highlighted the potential role of γδ T cells on HSCT outcomes. Our aim was to scrutinize available evidence of γδ T-cell impact on relapse, infections, survival, and acute graft-versus-host disease (aGVHD). We performed a systematic review and meta-analysis of studies assessing γδ T cells in HSCT. We searched PubMed, Web of Science, Scopus, and conference abstracts from inception to March 2019 for relevant studies. We included all studies that assessed γδ T cells associated with HSCT. Data were extracted independently by 2 investigators based on strict selection criteria. A random-effects model was used to pool outcomes across studies. Primary outcome was disease relapse. We also assessed infections, survival, and aGVHD incidence. The review was registered with PROSPERO (CRD42019133344). Our search returned 2412 studies, of which 11 (919 patients) were eligible for meta-analysis. Median follow-up was 30 months (interquartile range, 22-32). High γδ T-cell values after HSCT were associated with less disease relapse (risk ratio [RR], 0.58; 95% confidence interval [95% CI], 0.40-0.84; P = .004; I2 = 0%), fewer viral infections (RR, 0.59; 95% CI, 0.43-0.82; P = .002; I2 = 0%) and higher overall (HR, 0.28; 95% CI, 0.18-0.44; P < .00001; I2 = 0%) and disease-free survivals (HR 0.29; 95% CI, 0.18-0.48; P < .00001; I2 = 0%). We found no association between high γδ T-cell values and aGVHD incidence (RR, 0.72; 95% CI, 0.41-1.27; P = .26; I2 = 0%). In conclusion, high γδ T cells after HSCT is associated with a favorable clinical outcome but not with aGVHD development, suggesting that γδ T cells have a significant effect on the success of HSCT. This study was registered with PROSPERO as #CRD42019133344.


Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 2482-2482
Author(s):  
Hanane Boukarabila ◽  
Kalpana Nattamai ◽  
Medhanie Assmelash Mulaw ◽  
Hartmut Geiger

Aging-associated immune remodeling (AAIR) leads to an impaired ability to respond to vaccination and combat infections, and is due to many factors acting in concert. Several studies have linked the T-cell decline that occurs with age to thymic involution. However, there is novel and mounting evidence that also aged lymphoid-primed multipotent progenitors (LMPPs) are immune system intrinsic players in AAIR. However, very little is known on molecular and cellular mechanisms by which aging LMPPs could drive this AAIR phenomenon. Deciphering the underlying mechanisms is of crucial importance for developing new therapies to attenuate AAIR. Here, we present new data demonstrating the dysregulated pathways associated with aged LMPPs and the cellular changes in early thymic differentiation events in driving AAIR. To assess the T-lineage potential of aged LMPPs, we performed single cells ex-vivo OP9D assays using LMPPs (Lin-cKit+Sca1+CD34-Flt3hi) from aged (18-20 month-old) and young (8-10 week-old) C57BL/6 animals as controls. The frequencies of T-cell lineage potential in aged LMPPs and young LMPPs at the single cell level were very similar. This result was also validated in vivo by transplantation assays where 5000 aged or young LMPPs were injected into sub-lethally irradiated young recipients followed by T-cell lineage (CD4+ & CD8+) analysis in the peripheral blood (PB) at 4 weeks post transplantation (Mean; Y:12,75 vs A:16:23 % of total, p=0.46). However, aged LMPPs were associated with a dramatic disadvantage of PB T-cells at 4 weeks post injections (Mean; Y:9 vs A:2.3 % of total, p<0.0001) and in the development of all thymic stages of thymocytes, from early double negative stage CD4-CD8-(DN1) (Mean; Y:30 vs A:8 % of parent, p<0.0001) to double positive stage CD4+CD8+(DP) (Mean; Y:53 vs A:15 % of parent, p<0.0001), as well as single positive (SP) CD4+(Mean; Y:54 vs A:13 % of parent, p<0.0001) and CD8+(Mean; Y:45 vs A:10 % of parent, p<0.0001) thymocytes when intravenously transplanted in combination with 1:1 ratio of young LMPPs into young recipients. To overcome a potential homing to the thymus bias of aged LMPPs in competitive transplants, we performed intra-thymic injections of young and aged LMPPs with identical ratios into sub-lethally irradiated young recipients. The analysis of PB at 4 weeks post injections show a dramatic reduction of PB T-cells derived from aged LMPPs in comparison with young LMPPs (Mean; Y:14.8 vs A:8 % of total, p<0.0001). There was primarily a strong disadvantage towards generating DP stage (Mean; Y:46 vs A:28 % of parent, p<0.0001), suggesting that the intra-thymic injections indeed alleviated the dramatic decrease in the early thymocyte stage DN1 (Mean; Y:31 vs A:22 % of parent, p<0.05). This suggests that aged LMPPs confer a T-cell differentiation and maybe an additional homing to the thymus defect. We also performed RNA-Seq analyses on LMPPs from young and aged mice. Unsupervised hierarchical clustering of differentially expressed genes between young and aged LMPPs highlighted a clear dysregulation of only a few pathways that are involved in T-cell development such as Notch signaling. We next correlated our RNA-Seq data with other immunological signatures in attempt to look for more T-cell specific key factors that are differentially expressed between young and aged LMPPs. Importantly, the results show that the data from our RNA-Seq correlated with more than 400 immunological signatures among which 25 were most highly correlated. Interestingly, this correlation has allowed us to curate a list of the top 30 differentially expressed genes between young and aged LMPPs including T-cell specific transcription factors such as Satb1 and Foxo1. Altogether, our findings reveal that the T-cell immune decline that occurs with age is already imprinted in LMPPs within the bone marrow and translates into a dysregulation of signaling pathways that are directly related to T-cell development. Targeting these pathways could open up new perspectives in attenuating AAIR. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 227-227
Author(s):  
Ross W. Perko ◽  
Paul Thomas ◽  
Mari Hashitate Dallas

Abstract Abstract 227 Recent studies show that accelerated γΔ T cell reconstitution after hematopoietic stem cell transplantation (HSCT) is associated with improved overall survival (OS) though the mechanisms have not been elucidated. Here, we confirm that early γΔ T cell recovery after HSCT is an independent predictor for improving OS and event free survival (EFS). Moreover, patients with robust γΔ T cell recovery after HSCT appear to be protected from increased risk of serious life threatening infections, and acute gut and chronic graft versus host disease (GVHD). More importantly, we show that γΔ T cell recovery dynamics are independent from those of classical αβ T cells. We evaluated 102 consecutive pediatric patients with acute leukemia undergoing HSCT at St. Jude Children's Research Hospital from 1996–2011. The median age of the patients was 10.5 ± 5.9 yrs. (range, 0.6–25.2) and median follow up was 2.7±1.8 yrs. (range 0.2–6.0). There were 57% males, 43% females and 59% with ALL and 41% with AML. There were 14 patients with elevated γΔ T cells (≥1.75×105 cells/ml) and 88 with low/normal γΔ T cells (<1.75×105 cells/ml). There were no significant differences between the two groups with respect to age, sex, disease or donor source, p=0.7, 0.5, 1 and 0.07 respectively. Fours years after HSCT, OS was significantly higher for patients in the elevated group compared to the patients in the low/normal group, 93% and 60%, respectively, p=0.0173. Survival without relapse or graft failure (EFS) was significantly higher in the elevated group compared to the low/normal group, 85.7% and 58.0%, respectively. Since T cell reconstitution following HSCT is age dependent, we determined if γΔ T cell recovery correlated with age and/or CD3+ cells. Multivariate analysis showed no correlation between the number of CD3+ and γΔ T cells. In fact, 13 of 14 patients that recovered with increased number of γΔ T cells had normal or low numbers of CD3+ cells. Thus, γΔ T cell recovery is not a simple correlate of T cell reconstitution. Because γΔ T cells play a central role in maintaining intestinal epithelium integrity, we evaluated the incidence of gut GVHD. We found a significant lower rate of gut GVHD in the elevated group compared to the low/normal group, 0% and 17% respectively. Furthermore, the number of γΔ T cells in patients with cGVHD (2.3 x105 cells/ml) was significantly lower compared to patients without cGVHD (6.2 x105 cells/ml), p=0.01. This suggests that γΔ T cell may protect against gut and cGVHD. Since accumulating evidence suggests that γΔ T cells contribute to both innate and adaptive immune responses during infections, we evaluated the rate and types of infection between the two groups. We found a significant lower incidence of infection in the elevated group compared to the low/normal group, 21% and 54% respectively p=0.02. Furthermore, the elevated group had only viral infections while the low/normal group had viral, bacterial and fungal infections. Recent studies suggested that γΔ T cells could contribute to surveillance of CMV reactivation after HSCT through cooperation with anti-CMV IgG. Evaluation of CMV infections found no significant decrease in the incidence of CMV infection in the elevated group compared to the low/normal group, 14% and 2%. In summary, this is the first reported study of γΔ T cell recovery after HSCT in pediatric patients and adds new insights into the role γΔ T cells by evaluating the relationship of the most common complications such as relapse, GVHD and infections. Disclosures: No relevant conflicts of interest to declare.


2021 ◽  
Vol 9 (4) ◽  
pp. e002051
Author(s):  
Ryan Michael Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundAnti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.ResultsIL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.ConclusionsMechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaohui Wang ◽  
Xiang Lin ◽  
Zihan Zheng ◽  
Bingtai Lu ◽  
Jun Wang ◽  
...  

AbstractInnate immunity is important for host defense by eliciting rapid anti-viral responses and bridging adaptive immunity. Here, we show that endogenous lipids released from virus-infected host cells activate lung γδ T cells to produce interleukin 17 A (IL-17A) for early protection against H1N1 influenza infection. During infection, the lung γδ T cell pool is constantly supplemented by thymic output, with recent emigrants infiltrating into the lung parenchyma and airway to acquire tissue-resident feature. Single-cell studies identify IL-17A-producing γδ T (Tγδ17) cells with a phenotype of TCRγδhiCD3hiAQP3hiCXCR6hi in both infected mice and patients with pneumonia. Mechanistically, host cell-released lipids during viral infection are presented by lung infiltrating CD1d+ B-1a cells to activate IL-17A production in γδ T cells via γδTCR-mediated IRF4-dependent transcription. Reduced IL-17A production in γδ T cells is detected in mice either lacking B-1a cells or with ablated CD1d in B cells. Our findings identify a local host-immune crosstalk and define important cellular and molecular mediators for early innate defense against lung viral infection.


Blood ◽  
2003 ◽  
Vol 102 (1) ◽  
pp. 200-206 ◽  
Author(s):  
Martin Wilhelm ◽  
Volker Kunzmann ◽  
Susanne Eckstein ◽  
Peter Reimer ◽  
Florian Weissinger ◽  
...  

Abstract There is increasing evidence that γδ T cells have potent innate antitumor activity. We described previously that synthetic aminobisphosphonates are potent γδ T cell stimulatory compounds that induce cytokine secretion (ie, interferon γ [IFN-γ]) and cell-mediated cytotoxicity against lymphoma and myeloma cell lines in vitro. To evaluate the antitumor activity of γδ T cells in vivo, we initiated a pilot study of low-dose interleukin 2 (IL-2) in combination with pamidronate in 19 patients with relapsed/refractory low-grade non-Hodgkin lymphoma (NHL) or multiple myeloma (MM). The objectives of this trial were to determine toxicity, the most effective dose for in vivo activation/proliferation of γδ T cells, and antilymphoma efficacy of the combination of pamidronate and IL-2. The first 10 patients (cohort A) who entered the study received 90 mg pamidronate intravenously on day 1 followed by increasing dose levels of continuous 24-hour intravenous (IV) infusions of IL-2 (0.25 to 3 × 106 IU/m2) from day 3 to day 8. Even at the highest IL-2 dose level in vivo, γδ T-cell activation/proliferation and response to treatment were disappointing with only 1 patient achieving stable disease. Therefore, the next 9 patients were selected by positive in vitro proliferation of γδ T cells in response to pamidronate/IL-2 and received a modified treatment schedule (6-hour bolus IV IL-2 infusions from day 1-6). In this patient group (cohort B), significant in vivo activation/proliferation of γδ T cells was observed in 5 patients (55%), and objective responses (PR) were achieved in 3 patients (33%). Only patients with significant in vivo proliferation of γδ T cells responded to treatment, indicating that γδ T cells might contribute to this antilymphoma effect. Overall, administration of pamidronate and low-dose IL-2 was well tolerated. In conclusion, this clinical trial demonstrates, for the first time, that γδ T-cell–mediated immunotherapy is feasible and can induce objective tumor responses. (Blood. 2003;102:200-206)


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A119-A119
Author(s):  
Lu Bai ◽  
Kevin Nishimoto ◽  
Mustafa Turkoz ◽  
Marissa Herrman ◽  
Jason Romero ◽  
...  

BackgroundAutologous chimeric antigen receptor (CAR) T cells have been shown to be efficacious for the treatment of B cell malignancies; however, widespread adoption and application of CAR T cell products still face a number of challenges. To overcome these challenges, Adicet Bio is developing an allogeneic γδ T cell-based CAR T cell platform, which capitalizes on the intrinsic abilities of Vδ1 γδ T cells to recognize and kill transformed cells in an MHC-unrestricted manner, to migrate to epithelial tissues, and to function in hypoxic conditions. To gain a better understanding of the requirements for optimal intratumoral CAR Vδ1 γδ T cell activation, proliferation, and differentiation, we developed a three-dimensional (3D) tumor spheroid assay, in which tumor cells acquire the structural organization of a solid tumor and establish a microenvironment that has oxygen and nutrient gradients. Moreover, through the addition of cytokines and/or tumor stromal cell types, the spheroid microenvironment can be modified to reflect hot or cold tumors. Here, we report on the use of a 3D CD20+ Raji lymphoma spheroid assay to evaluate the effects of IL-2 and IL-15, positive regulators of T cell homeostasis and differentiation, on the proliferative and antitumor capacities of CD20 CAR Vδ1 γδ T cells.MethodsMolecular, phenotypic, and functional profiling were performed to characterize the in vitro dynamics of the intraspheroid CD20 CAR Vδ1 γδ T cell response to target antigen in the presence of IL-2, IL-15, or no added cytokine.ResultsWhen compared to no added cytokine, the addition of IL-2 or IL-15 enhanced CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and cytokine production in a dose-dependent manner but were only able to alter the kinetics of Raji cell killing at low effector to target ratios. Notably, differential gene expression analysis using NanoString nCounter® Technology confirmed the positive effects of IL-2 or IL-15 on CAR-activated Vδ1 γδ T cells as evidenced by the upregulation of genes involved in activation, cell cycle, mitochondrial biogenesis, cytotoxicity, and cytokine production.ConclusionsTogether, these results not only show that the addition of IL-2 or IL-15 can potentiate CD20 CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation into antitumor effectors but also highlight the utility of the 3D spheroid assay as a high throughput in vitro method for assessing and predicting CAR Vδ1 γδ T cell activation, proliferation, survival, and differentiation in hot and cold tumors.


Blood ◽  
2009 ◽  
Vol 114 (20) ◽  
pp. 4422-4431 ◽  
Author(s):  
Georg Gruenbacher ◽  
Hubert Gander ◽  
Andrea Rahm ◽  
Walter Nussbaumer ◽  
Nikolaus Romani ◽  
...  

Abstract CD56+ human dendritic cells (DCs) have recently been shown to differentiate from monocytes in response to GM-CSF and type 1 interferon in vitro. We show here that CD56+ cells freshly isolated from human peripheral blood contain a substantial subset of CD14+CD86+HLA-DR+ cells, which have the appearance of intermediate-sized lymphocytes but spontaneously differentiate into enlarged DC-like cells with substantially increased HLA-DR and CD86 expression or into fully mature CD83+ DCs in response to appropriate cytokines. Stimulation of CD56+ cells containing both DCs and abundant γδ T cells with zoledronate and interleukin-2 (IL-2) resulted in the rapid expansion of γδ T cells as well as in IFN-γ, TNF-α, and IL-1β but not in IL-4, IL-10, or IL-17 production. IFN-γ, TNF-α, and IL-1β production were almost completely abolished by depleting CD14+ cells from the CD56+ subset before stimulation. Likewise, depletion of CD14+ cells dramatically impaired γδ T-cell expansion. IFN-γ production could also be blocked by neutralizing the effects of endogenous IL-1β and TNF-α. Conversely, addition of recombinant IL-1β, TNF-α, or both further enhanced IFN-γ production and strongly up-regulated IL-6 production. Our data indicate that CD56+ DCs from human blood are capable of stimulating CD56+ γδ T cells, which may be harnessed for immunotherapy.


2021 ◽  
Vol 11 (9) ◽  
pp. 923
Author(s):  
Josephine G. M. Strijker ◽  
Ronja Pscheid ◽  
Esther Drent ◽  
Jessica J. F. van der Hoek ◽  
Bianca Koopmans ◽  
...  

Currently ~50% of patients with a diagnosis of high-risk neuroblastoma will not survive due to relapsing or refractory disease. Recent innovations in immunotherapy for solid tumors are highly promising, but the low MHC-I expression of neuroblastoma represents a major challenge for T cell-mediated immunotherapy. Here, we propose a novel T cell-based immunotherapy approach for neuroblastoma, based on the use of TEG002, αβ-T cells engineered to express a defined γδ-T cell receptor, which can recognize and kill target cells independent of MHC-I. In a co-culture killing assay, we showed that 3 out of 6 neuroblastoma organoids could activate TEG002 as measured by IFNγ production. Transcriptional profiling showed this effect correlates with an increased activity of processes involved in interferon signaling and extracellular matrix organization. Analysis of the dynamics of organoid killing by TEG002 over time confirmed that organoids which induced TEG002 activation were efficiently killed independent of their MHC-I expression. Of note, efficacy of TEG002 treatment was superior to donor-matched untransduced αβ-T cells or endogenous γδ-T cells. Our data suggest that TEG002 may be a promising novel treatment option for a subset of neuroblastoma patients.


Sign in / Sign up

Export Citation Format

Share Document