scholarly journals Interleukin 33 is differentially expressed in the thymus by developmental stage and cell type.

2020 ◽  
Author(s):  
Shahan Mamoor

The thymus is the site of positive and negative selection (1-5). Comparing transcriptome data from cortical and medullary epithelial cells of the murine thymus (cTEC and mTEC) at 1, 3, and 6 months of age using a published dataset (6) revealed that the IL-1 family cytokine Interleukin 33 (IL-33) (7) was among the genes whose expression varied most significantly through mouse development in mTEC expressing low levels of the class II major histocompatibility complex MHC-II. At 6 months, the IL-33 was among the genes whose expression was most different between cell types. The alarmin IL-33 is differentially expressed between cells of the epithelium of the thymus and its expression is developmentally-patterned in the medulla of the thymus.

2020 ◽  
Author(s):  
Shahan Mamoor

Medullary thymic epithelial cells, or mTEC, are cells of the thymus that can be sorted and classified based on expression of the class II major histocompatibility complex, MHC-II (1-3). mTEChi and mTEClo can be further segregated by expression of the CD80 marker, but there are few systematic analyses of the unique transcriptional behavior of each mTEC cell subset (4-6). We performed global differential gene expression profiling by comparing the transcriptomes of mTEChi and mTEClo (7) to determine the most significant transcriptional differences between these two cell subsets of the thymus. We found nearly a dozen groups of gene that distinctly identify these two cell types from each other. These included phospholipase-type enzymes, transcription factors, transcriptional coactivators and epigenetic proteins, cell signaling intermediates, cell surface receptors, molecules involved in ubiquitination, taste receptors, cathepsins, and interleukin-13. mTEChi and mTEClo can be discerned with facility as discrete cell types independent of MHC-II and CD80 expression through systematic comparative transcriptional profiling and the molecular descriptions provided here can be used as a resource for future investigations into the organ primarily responsible for providing lymphocyte self-tolerance instruction.


2020 ◽  
Author(s):  
Shahan Mamoor

The thymus is an organ with immunologic functions conserved from mouse to man (1). Both fetal and mammalian thymuses exist (1). The processes of negative and positive selection (2) both occur in the thymus and are thought to be conducted in an anatomically distinct fashion, across development. We performed global differential gene expression profiling using a microarray dataset (6) of the murine cortical epithelial cell (cTEC) and medullary epithelial cell (mTEC) transcriptome at months 1, 3, and 6. This analysis revealed that multiple members of the kinesin (Kif) gene family were differentially expressed by cTECs and by mTEC that express high levels of the class II major histocompatibility complex, in a stage-selective manner, but not by mTEC that express low levels of the class II major histocompatibility complex. The products of Kif genes may serve some important motor or transport function in the cortical or medullary epithelium of the mammalian thymus.


2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi74-vi74
Author(s):  
Erin Smithberger ◽  
Abigail Shelton ◽  
Madison Butler ◽  
Alex Flores ◽  
Ryan Bash ◽  
...  

Abstract Glioblastoma (GBM) is an aggressive primary brain tumor with a poor survival rate. One of the most common molecular alterations seen in GBM is amplification and/or mutation of the Epidermal Growth Factor Receptor (EGFR), which has made it an attractive therapeutic target. However, several EGFR tyrosine kinase inhibitors have been tested clinically in GBM with minimal success. One reason for this lack of efficacy could be due to acute, adaptive resistance via alternative pathway activation. To investigate this mechanism of tumor resistance, we used RNA-seq and multiplex inhibitor bead/mass spectrometry (MIB-MS) to analyze the transcriptomes and kinomes of genetically engineered murine astrocytes with common GBM genotypes. We have previously shown that 38% of the expressed kinome varied among a panel of diverse nGEM astrocytes harboring Cdkn2a deletion (C) plus Pten deletion (CP), wild-type human EGFR (CE) or EGFRvIII (CEv3) overexpression or both EGFRvIII overexpression and Pten deletion (CEv3P). Although CE have a similar transcriptional profile to C cells at baseline, when treated with the EGFR inhibitor afatinib, CE respond more similarly to CEv3 cells. When cells containing endogenous murine EGFR (C and CP) are treated with afatinib, fewer than 0.5% of kinases showed differential expression. In cells with EGFR overexpression alone, more than 6% of kinases were differentially expressed upon afatinib treatment, including Ntrk3, Fgfr2 and 3, Lyn, Bmx, Epha2 and 5, Fn3k, a kinase involved in fructosamine processing, and Nrbp2, a kinase involved in regulation of apoptosis. This effect was blunted in cells lacking Pten in addition to having EGFRvIII (CEv3P), resulting in less than 2% of kinases being differentially expressed. The only kinase upregulated in all three EGFR-overexpressing cell types was Coq8a, which is involved in electron transport and response to DNA damage. Given this overlap in response, Coq8a could be a potential dual treatment target for GBM.


Pathogens ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 149
Author(s):  
Sreekumar Othumpangat ◽  
William G. Lindsley ◽  
Donald H. Beezhold ◽  
Michael L. Kashon ◽  
Carmen N. Burrell ◽  
...  

MicroRNAs (miRNAs) have remarkable stability and are key regulators of mRNA transcripts for several essential proteins required for the survival of cells and replication of the virus. Exosomes are thought to play an essential role in intercellular communications by transporting proteins and miRNAs, making them ideal in the search for biomarkers. Evidence suggests that miRNAs are involved in the regulation of influenza virus replication in many cell types. During the 2016 and 2017 influenza season, we collected blood samples from 54 patients infected with influenza and from 30 healthy volunteers to identify the potential role of circulating serum miRNAs and cytokines in influenza infection. Data comparing the exosomal miRNAs in patients with influenza B to healthy volunteers showed 76 miRNAs that were differentially expressed (p < 0.05). In contrast, 26 miRNAs were differentially expressed between patients with influenza A (p < 0.05) and the controls. Of these miRNAs, 11 were commonly expressed in both the influenza A and B patients. Interferon (IFN)-inducing protein 10 (IP-10), which is involved in IFN synthesis during influenza infection, showed the highest level of expression in both influenza A and B patients. Influenza A patients showed increased expression of IFNα, GM-CSF, interleukin (IL)-13, IL-17A, IL-1β, IL-6 and TNFα, while influenza B induced increased levels of EGF, G-CSF, IL-1α, MIP-1α, and TNF-β. In addition, hsa-miR-326, hsa-miR-15b-5p, hsa-miR-885, hsa-miR-122-5p, hsa-miR-133a-3p, and hsa-miR-150-5p showed high correlations to IL-6, IL-15, IL-17A, IL-1β, and monocyte chemoattractant protein-1 (MCP-1) with both strains of influenza. Next-generation sequencing studies of H1N1-infected human lung small airway epithelial cells also showed similar pattern of expression of miR-375-5p, miR-143-3p, 199a-3p, and miR-199a-5p compared to influenza A patients. In summary, this study provides insights into the miRNA profiling in both influenza A and B virus in circulation and a novel approach to identify the early infections through a combination of cytokines and miRNA expression.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Yang Zhao ◽  
Hao Guo ◽  
Wenda Wang ◽  
Guoyang Zheng ◽  
Zhan Wang ◽  
...  

Abstract Objective Tuberous sclerosis complex (TSC) is a rare autosomal dominant disease characterized by lesions throughout the body. Our previous study showed the abnormal up-regulation of miRNAs plays an important part in the pathogenesis of TSC-related renal angiomyolipoma (TSC-RAML). circRNAs were known as important regulators of miRNA, but little is known about the circRNAs in TSC-RAMLs. Methods Microarray chips and RNA sequencing were used to identify the circRNAs and mRNAs that were differently expressed between the TSC-RAML and normal kidney tissue. A competitive endogenous RNA (ceRNA) regulatory network was constructed to reveal the regulation of miRNAs and mRNAs by the circRNAs. The biological functions of circRNA and mRNA were analyzed by pathway analysis. Microenvironmental cell types were estimated with the MCP-counter package. Results We identified 491 differentially expressed circRNAs (DECs) and 212 differentially expressed genes (DEGs), and 6 DECs were further confirmed by q-PCR. A ceRNA regulatory network which included 6 DECs, 5 miRNAs, and 63 mRNAs was established. Lipid biosynthetic process was significantly up-regulated in TSC-RAML, and the humoral immune response and the leukocyte chemotaxis pathway were found to be down-regulated. Fibroblasts are enriched in TSC-RAML, and the up-regulation of circRNA_000799 and circRNA_025332 may be significantly correlated to the infiltration of the fibroblasts. Conclusion circRNAs may regulate the lipid metabolism of TSC-RAML by regulation of the miRNAs. Fibroblasts are enriched in TSC-RAMLs, and the population of fibroblast may be related to the alteration of circRNAs of TSC-RAML. Lipid metabolism in fibroblasts is a potential treatment target for TSC-RAML.


Author(s):  
Shanshan Jiang ◽  
Rong Wang ◽  
Lu Han ◽  
Kudelaidi Kuerban ◽  
Li Ye ◽  
...  

AbstractThis research aims to investigate the effect of gemcitabine (GEM) on various activities and functions of macrophages. Phagocytosis, cell autophagy and reactive oxygen species (ROS) were analysed by laser scanning confocal microscope. The cell cycle status and major histocompatibility complex II (MHC-II) expression were examined by flow cytometry. Inflammatory cytokine secretion such as tumour necrosis factor α (TNF-α) and interleukin 6 (IL-6) was detected by Elisa assay. The expression of proteins was analysed by western blot method. The results revealed that GEM-induced immune inhibition of M1-type RAW264.7 macrophages activated by interferon-γ (IFN-γ) and lipopolysaccharide (LPS). We also found that GEM inhibited autophagy, as evidenced by the reduced formation of autophagosome-like vacuoles and autophagosomes. Further study showed that incubation of activated macrophages with the autophagy inhibitor 3-MA induced immune suppression. In contrast, treatment with the autophagy inducer trehalose (Tre) restored phagocytosis, TNF-α and IL-6 secretion, and MHC-II expression in GEM-induced immune-inhibited macrophages. GEM reduced immune effect of M1-type RAW264.7 macrophages via inhibiting TNF-α, IL-6 and MHC-II expression. Furthermore, activation of autophagy by Tre reversed GEM-induced immune inhibition of RAW264.7 macrophages.


2021 ◽  
Vol 22 (14) ◽  
pp. 7360
Author(s):  
Angie De La Cruz ◽  
Aubrey Hargrave ◽  
Sri Magadi ◽  
Justin A. Courson ◽  
Paul T. Landry ◽  
...  

Platelet extravasation during inflammation is under-appreciated. In wild-type (WT) mice, a central corneal epithelial abrasion initiates neutrophil (PMN) and platelet extravasation from peripheral limbal venules. The same injury in mice expressing low levels of the β2-integrin, CD18 (CD18hypo mice) shows reduced platelet extravasation with PMN extravasation apparently unaffected. To better define the role of CD18 on platelet extravasation, we focused on two relevant cell types expressing CD18: PMNs and mast cells. Following corneal abrasion in WT mice, we observed not only extravasated PMNs and platelets but also extravasated erythrocytes (RBCs). Ultrastructural observations of engorged limbal venules showed platelets and RBCs passing through endothelial pores. In contrast, injured CD18hypo mice showed significantly less venule engorgement and markedly reduced platelet and RBC extravasation; mast cell degranulation was also reduced compared to WT mice. Corneal abrasion in mast cell-deficient (KitW-sh/W-sh) mice showed less venule engorgement, delayed PMN extravasation, reduced platelet and RBC extravasation and delayed wound healing compared to WT mice. Finally, antibody-induced depletion of circulating PMNs prior to corneal abrasion reduced mast cell degranulation, venule engorgement, and extravasation of PMNs, platelets, and RBCs. In summary, in the injured cornea, platelet and RBC extravasation depends on CD18, PMNs, and mast cell degranulation.


2016 ◽  
Vol 213 (9) ◽  
pp. 1695-1703 ◽  
Author(s):  
Haiyin Liu ◽  
Reema Jain ◽  
Jing Guan ◽  
Vivian Vuong ◽  
Satoshi Ishido ◽  
...  

Major histocompatibility complex class II (MHC II) expression is tightly regulated, being subjected to cell type–specific mechanisms that closely control its levels at the cell surface. Ubiquitination by the E3 ubiquitin ligase MARCH 1 regulates MHC II expression in dendritic cells and B cells. In this study, we demonstrate that the related ligase MARCH 8 is responsible for regulating surface MHC II in thymic epithelial cells (TECs). March8−/− mice have elevated MHC II at the surface of cortical TECs and autoimmune regulator (AIRE)− medullary TECs (mTECs), but not AIRE+ mTECs. Despite this, thymic and splenic CD4+ T cell numbers and repertoires remained unaltered in March8−/− mice. Notably, the ubiquitination of MHC II by MARCH 8 is controlled by CD83. Mice expressing a mutated form of CD83 (Cd83anu/anu mice) have impaired CD4+ T cell selection, but deleting March8 in Cd83anu/anu mice restored CD4+ T cell selection to normal levels. Therefore, orchestrated regulation of MHC II surface expression in TECs by MARCH 8 and CD83 plays a major role in CD4+ T cell selection. Our results also highlight the specialized use of ubiquitinating machinery in distinct antigen-presenting cell types, with important functional consequences and implications for therapeutic manipulation.


1997 ◽  
Vol 186 (5) ◽  
pp. 665-672 ◽  
Author(s):  
Kayo Inaba ◽  
Maggie Pack ◽  
Muneo Inaba ◽  
Hiraki Sakuta ◽  
Frank Isdell ◽  
...  

T lymphocytes recirculate continually through the T cell areas of peripheral lymph nodes. During each passage, the T cells survey the surface of large dendritic cells (DCs), also known as interdigitating cells. However, these DCs have been difficult to release from the lymph node. By emphasizing the use of calcium-free media, as shown by Vremec et al. (Vremec, D., M. Zorbas, R. Scollay, D.J. Saunders, C.F. Ardavin, L. Wu, and K. Shortman. 1992. J. Exp. Med. 176:47–58.), we have been able to release and enrich DCs from the T cell areas. The DCs express the CD11c leukocyte integrin, the DEC-205 multilectin receptor for antigen presentation, the intracellular granule antigens which are recognized by monoclonal antibodies M342, 2A1, and MIDC-8, very high levels of MHC I and MHC II, and abundant accessory molecules such as CD40, CD54, and CD86. When examined with the Y-Ae monoclonal which recognizes complexes formed between I-Ab and a peptide derived from I-Eα, the T cell area DCs expressed the highest levels. The enriched DCs also stimulated a T-T hybridoma specific for this MHC II–peptide complex, and the hybridoma underwent apoptosis. Therefore DCs within the T cell areas can be isolated. Because they present very high levels of self peptides, these DCs should be considered in the regulation of self reactivity in the periphery.


2016 ◽  
Vol 90 (18) ◽  
pp. 8047-8058 ◽  
Author(s):  
Zhiguo Sun ◽  
Hem Chandra Jha ◽  
Yong-gang Pei ◽  
Erle S. Robertson

ABSTRACTKaposi's sarcoma-associated herpesvirus (KSHV) maintains two modes of life cycle, the latent and lytic phases. To evade the attack of the cell host's immune system, KSHV switches from the lytic to the latent phase, a phase in which only a few of viral proteins are expressed. The mechanism by which KSHV evades the attack of the immune system and establishes latency has not been fully understood. Major histocompatibility complex class II (MHC-II) molecules are key components of the immune system defense mechanism against viral infections. Here we report that HLA-DRα, a member of the MHC-II molecules, was downregulated by the replication and transcription activator (RTA) protein encoded by KSHV ORF50, an important regulator of the viral life cycle. RTA not only downregulated HLA-DRα at the protein level through direct binding and degradation through the proteasome pathway but also indirectly downregulated the protein level of HLA-DRα by enhancing the expression of MARCH8, a member of the membrane-associated RING-CH (MARCH) proteins. Our findings indicate that KSHV RTA facilitates evasion of the virus from the immune system through manipulation of HLA-DRα.IMPORTANCEKaposi's sarcoma-associated herpesvirus (KSHV) has a causal role in a number of human cancers, and its persistence in infected cells is controlled by the host's immune system. The mechanism by which KSHV evades an attack by the immune system has not been well understood. This work represents studies which identify a novel mechanism by which the virus can facilitate evasion of an immune system. We now show that RTA, the replication and transcription activator encoded by KSHV (ORF50), can function as an E3 ligase to degrade HLA-DRα. It can directly bind and induce degradation of HLA-DRα through the ubiquitin-proteasome degradation pathway. In addition to the direct regulation of HLA-DRα, RTA can also indirectly downregulate the level of HLA-DRα protein by upregulating transcription of MARCH8. Increased MARCH8 results in the downregulation of HLA-DRα. Furthermore, we also demonstrate that expression of HLA-DRα was impaired in KSHVde novoinfection.


Sign in / Sign up

Export Citation Format

Share Document