scholarly journals Structural controls on earthquake rupture revealed by the 2020 Mw 6.0 Jiashi earthquake (Kepingtag belt, SW Tian Shan, China)

2021 ◽  
Author(s):  
Siyu Wang ◽  
Edwin Nissen ◽  
Timothy Craig ◽  
Eric Bergman ◽  
Léa Pousse-Beltran

The Kepingtag (Kalpin) fold-and-thrust belt of the southern Chinese Tian Shan is characterized by active shortening and intense seismic activity. Geological cross-sections and seismic reflection profiles suggest thin-skinned, northward-dipping thrust sheets detached in an Upper Cambrian décollement. The January 19 2020 Mw 6.0 Jiashi earthquake provides an opportunity to investigate how coseismic deformation is accommodated in this structural setting. Coseismic surface deformation resolved with Sentinel-1 Interferometric Synthetic Aperture Radar (InSAR) is centered on the back limb of the frontal Kepingtag anticline. Elastic dislocation modelling suggests that the causative fault is located at ~7 km depth and dips ~7° northward, consistent with the inferred position of the décollement. The narrow slip pattern (length ~37 km but width only ~9 km) implies that there is a strong structural or lithological control on the rupture extent, with up-dip slip propagation possibly halted by an abrupt change in dip angle where the Kepingtag thrust is inferred to branch off the décollement. A depth discrepancy between mainshock slip constrained by InSAR and teleseismic waveform modelling (~7 km) and well-relocated aftershocks (~10-20 km) may imply that sediments above the décollement are velocity strengthening. We also relocate 148 regional events from 1977 to 2020 to characterize the broader distribution of seismicity across the Kepingtag belt. The calibrated hypocenters combined with previous teleseismic waveform models show that thrust and reverse faulting earthquakes cluster at relatively shallow depths of ~7-15 km but include abundant out-of-sequence events both north and south of the frontal Kepingtag fault.

2020 ◽  
Author(s):  
Anastasia Kushnareva ◽  
Artem Moskalenko ◽  
Alexander Pasenko

<p>The Talas Range forms the northwest part of the Caledonides of the Northern Tian Shan. Based on differences in the structural style, metamorphism and sedimentary successions, three thrust sheets have been identified – the Uzunakhmat, Talas, and Kumyshtag thrust sheets. The Talas and Kumyshtag thrust sheets consist of Neoproterozoic-Ordovician terrigenous and carbonate rock units, whereas the Uzunakhmat thrust sheet consists of Neoproterozoic terrigenous rocks metamorphosed up to greenschist facies. The Uzunakhmat thrust sheet is separated from the Talas and Kumyshtag thrust sheets by the southwest-dipping Central Talas thrust (CTT). The dextral strike-slip Talas-Fergana Fault bounds the Uzunakhmat thrust sheet in the southwest. The main deformation events occurred in the Middle-Late Ordovician.</p><p>Structural and strain studies were done along profiles normal to the strike of folds and faults and located in the northwest and southeast parts of the Uzunakhmat thrust sheet. We also incorporate in our study structural profile in the central part of the Uzunakhmat thrust sheet, documented by Khudoley (1993) and Voytenko & Khudoley (2012).</p><p>The main strain indicators were detrital quartz grains in sandstones. Rf/φ and Normalized Fry methods were used to identify the amount of strain. Oblate ellipsoids predominate with Rxz values varying mostly from 1,6 to 2,4. Long axes of strain ellipsoids are sub-horizontal with the southeast to east-southeast trend. Similar trends have long axes of the anisotropy magnetic susceptibility ellipsoid being parallel to fold axes, cleavage-bedding intersection and mineral lineation as well as the trend of the major thrusts, including CTT.</p><p>The modern shape of the Uzunakhmat thrust sheet is similar to an elongated triangle, pinching out northwest and expanding southeast. Cross-section balancing corrected for the amount of strain shows along-strike decreasing of shortening in the southeast direction. Total shortening varies from 35% to 55% between sections located about 15 km from each other. Such significant variation in shortening corresponds to variation in structural style with much more tight folds and more numerous thrusts for cross-sections with a higher amount of shortening. However, the restored length of all cross-sections is quite similar pointing to the approximately rectangular initial shape of the Uzunakhmat thrust sheet. Our interpretation is that during the Caledonian tectonic events, the Uzunakhmat thrust sheet was displaced in the northwest direction with accompanied thrusting and folding of rock units within the thrust sheet. These deformations formed the modern shape of the thrust sheet in accordance with the amount of shortening detected by cross-section balancing. This interpretation also implies that modern erosion did not significantly affect shape of the Uzunakhmat thrust sheet formed after the Caledonian deformation.</p><p>Khudoley, A.K., 1993. Structural and strain analyses of the middle part of the Talassian Alatau ridge (Middle Asia, Kirgiystan). J. Struct. Geol. 6, 693–706.</p><p>Voytenko N.V., Khudoley A.K. Structural evolution of metamorphic rocks in the Talas Alatau, Tien Shan, Central Asia: Implication for early stages of the Talas-Ferghana Fault. // C. R. Geoscience. 2012. V. 344. P. 138–148.</p>


Author(s):  
Yuan Yao ◽  
Shaoyan Wen ◽  
Tao Li ◽  
Chisheng Wang

Abstract The complexity of the coseismic rupture process of active thrust faults and the limitation of the 3D geometry of the fault plane play important roles in seismic risk assessment. The 2020 Mw 6.0 Jiashi earthquake is an example of seismic events that have occurred in the Kepingtage fold-and-thrust belt (FTB) in the southern Tian Shan belt. Integrated analysis of surface geology, topography, and seismic reflection profiles has delineated the surface and subsurface geometries of the Keping thrust fault (KPT). Combined with the focal mechanism, seismic reflection profiles, and Interferometric Synthetic Aperture Radar coseismic deformation, we are able to reveal the seismogenic structure of this earthquake. The Jiashi event was mainly a horizontal compression deformation; the sliding distribution was concentrated at a depth of 4–6 km, and the fault-slip angle was ∼15°. Our results show that the seismogenic structure of the Jiashi event was the KPT at the leading edge of the Kepingtage FTB. The fault plane is separated at depth by a horizontal detachment, with an upper (∼30°) and lower (∼15°) ramp. The coseismic rupture of the Jiashi event was constrained within the lower ramp. This event is a good example that readily explains why the Kepingtage FTB is characterized by moderate-magnitude (Mw 6.0–6.5) events.


2019 ◽  
Vol 12 (1) ◽  
pp. 99
Author(s):  
Yufen Niu ◽  
Shuai Wang ◽  
Wu Zhu ◽  
Qin Zhang ◽  
Zhong Lu ◽  
...  

Although the Zhaotong–Ludian fault is a seismically active zone located in the boundary between the Sichuan–Yunnan block and the South China block, it has not experienced a large earthquake greater than Mw 7 since at least 1700. On 3 August, 2014, an Mw 6.1 earthquake (the Ludian earthquake) ruptured the Zhaotong active belt in Ludian County, Yunnan province, China. This earthquake was the largest earthquake recorded in the region since 2000, and it provides us with a unique opportunity to study the active tectonics in the region. The analysis of the aftershocks showed that two conjugate faults could have been involved in the event. We first used Global Positioning System (GPS) data and C-band RADARSAT-2 imagery to map the coseismic surface deformation. We then inverted the derived coseismic deformation for the slip distribution based on the constructed conjugate fault model. Finally, the coulomb failure stress due to the Ludian earthquake was estimated to investigate the potential seismic hazards in this region. Our investigations showed that the Ludian earthquake was mainly a bilateral rupture event. The major slip of the main shock was located at depths of 0–5 km, which is close but does not superpose with the aftershocks that are mostly located at depths of 5–20 km. Interestingly, the seismic moment released by the aftershocks (6.9 × 1018 N∙m) was greater than that of the main shock (2.6 × 1018 N∙m). This evidence suggests that the accumulated elastic strain at depths of 0–20 km could have been fully released by the Ludian earthquake and its subsequent aftershocks. Furthermore, our analysis of the coulomb failure stress changes due to the main shock showed that the aftershocks could be the result of dynamic triggering rather than static triggering.


2000 ◽  
Vol 402 ◽  
pp. 109-136 ◽  
Author(s):  
AMY WARNCKE LANG ◽  
MORTEZA GHARIB

This experimental investigation into the nature of free-surface flows was to study the effects of surfactants on the wake of a surface-piercing cylinder. A better understanding of the process of vorticity generation and conversion at a free surface due to the absence or presence of surfactants has been gained. Surfactants, or surface contaminants, have the tendency to reduce the surface tension proportionally to the respective concentration at the free surface. Thus when surfactant concentration varies across a free surface, surface tension gradients occur and this results in shear stresses, thus altering the boundary condition at the free surface. A low Reynolds number wake behind a surface-piercing cylinder was chosen as the field of study, using digital particle image velocimetry (DPIV) to map the velocity and vorticity field for three orthogonal cross-sections of the flow. Reynolds numbers ranged from 350 to 460 and the Froude number was kept below 1.0. In addition, a new technique was used to simultaneously map the free surface deformation. Shadowgraph imaging of the free surface was also used to gain a better understanding of the flow. It was found that, depending on the surface condition, the connection of the shedding vortex filaments in the wake of the cylinder was greatly altered with the propensity for surface tension gradients to redirect the vorticity near the free surface to that of the surface-parallel component. This result has an impact on the understanding of turbulent flows in the vicinity of a free surface with varying surface conditions.


1977 ◽  
Vol 14 (1) ◽  
pp. 102-116 ◽  
Author(s):  
W. T. Coulbourn ◽  
R. Moberly

The continental margin of southern Peru and northern Chile was surveyed during the 1973 and 1974 expeditions of the research vessel Kana Keoki. Seismic reflection profiles reveal three large basins at about 1000 m depth between Mollendo, Peru (17°00′ S) and Iquique, Chile (20°00′ S). Only small basins and discontinuous terraces are seen on profiles crossing the Iquique-to-Antofagasta, Chile (23°30′ S) segment of the continental margin.The structural cross-sections of the basins resemble those of arc-trench gaps. The undeformed uppermost reflectors probably represent turbidites, as evidenced by displaced shallow-water benthic foraminifera and coarse sands in cores. Deeper reflectors are generally inclined land-ward, with dips and deformation increasing in the lower reflectors down to about 1.5 seconds penetration. Seaward convergence of these reflectors indicates a progressive shoreward migration of the axis of maximum sedimentation. If the deeper beds are also turbidites, this axis marks the axis of the sediment trap on the continental slope.The structure is consistent with subduction of an oceanic plate and obduction of a portion of its sediment cover. The imbricate stacking of obducted material is lifting an anticlinal ridge visible in most traverses across the trench side of the basin. The growing ridge is deforming the older sediment trapped in the upperslope basin and shifting the locus of deposition shoreward. The irregular distribution of the basins apparently is a product of culminations and depressions of the surfaces of imbricate fault planes. These undulations may result from the transference of the irregular structure of the oceanic plate to the face of the continental block.


2009 ◽  
Vol 24 (3) ◽  
pp. 844-852 ◽  
Author(s):  
M.J. Cordill ◽  
N.R. Moody ◽  
S.V. Prasad ◽  
J.R. Michael ◽  
W.W. Gerberich

In ductile metals, sliding contact induces plastic deformation resulting in subsurfaces, the mechanical properties of which are different from those of the bulk. This article describes a novel combination of nanomechanical test methods and analysis techniques to evaluate the mechanical behavior of the subsurfaces generated underneath a wear surface. In this methodology, nanoscratch techniques were first used to generate wear patterns as a function of load and number of cycles using a Hysitron TriboIndenter. Measurements were made on a (001) single crystal plane along two crystallographic directions, <001> and <011>. Nanoindentation was then used to measure mechanical properties in each wear pattern. The results on the (001) single crystal nickel plane showed that there was a strong increase in hardness with increasing applied load that was accompanied by a change in surface deformation. The amount of deformation underneath the wear patterns was examined from focused ion beam cross-sections of the wear patterns.


1987 ◽  
Vol 78 (3) ◽  
pp. 197-217 ◽  
Author(s):  
R. A. Gayer ◽  
A. H. N. Rice ◽  
D. Roberts ◽  
C. Townsend ◽  
A. Welbon

ABSTRACTConsideration of six balanced cross-sections through parts of the Finnmark Caledonides, N Norway indicates that shortening varies between 25% and 75%. A restored long cross-section across the width of the orogen, constructed with the aid of a branch line map, demonstrates a foreland propagating thrust system, with earlier formed more internal metamorphic nappes thrust SE 330 km under ductile conditions and then carried piggyback ESE a further 296 km on later brittle thrust sheets. Total shortening is 78·7% with a translation of the most internal thrust sheet of 626 km.The restored section suggests that: (1) the rate of propagation of deformation from hinterland to foreland is c. 2·27 cm y−1; (2) incorporation of basement into the nappes resulted from inversion of extensional faults formed during Iapetus rifting; (3) during rifting a Finnmark basement ridge separated a 220 km wide southeasterly Gaissa basin from the passive Iapetus continental margin which was at least 423 km wide; (4) the Finnmark Caledonides resulted from a continent-microcontinent collision which obducted continental crust at least 600 km across the Baltic margin; and (5) the Caledonian Baltoscandian margin prior to Iapetus suturing extended at least 400 km W of the Norwegian coast. On a Bullard reconstruction this overlaps with Laurentian rocks in Greenland. The excess continental crust is accounted for by shortening of the Baltoscandian margin during collision.


Author(s):  
Stig A. Schack Pedersen ◽  
Peter Gravesen

Glaciodynamic sequence stratigraphy provides a practical model for grouping and classifying complex geological data to aid interpretation of past climatic and environmental development in Quaternary successions. The principles of glaciodynamic sequence stratigraphy are applied here to summarise the complex glacial geological framework of Hvideklint on the island of Møn, south-east Denmark. The framework of the superimposed deformed Hvideklint is presented in a reconstructed geological cross-section of Hvideklint. For the construction of the architecture of the glaciotectonic complex, the interpretation of structures below sea level was based on a detailed new survey of the cliff section combined with construction of successive approximation balanced cross-sections. The new description is supported by drill hole data from the Jupiter database. Where chalk is not glaciotectonically deformed, the constructed depth to the top-chalk-surface is generally located about 30 m below sea level. In Hvideklint, thrust sheets with chalk are exposed 20 m above sea level, and the balanced cross-section constructions indicate that the décollement surface for a Hvideklint glaciotectonic complex is located about 80 m below sea level. Between the décollement level and the top of the complex, two or more thrust-fault flat-levels and connecting ramps add to the complex architecture of Hvideklint.


2021 ◽  
Vol 9 ◽  
Author(s):  
Heng Luo ◽  
Teng Wang ◽  
Shengji Wei ◽  
Mingsheng Liao ◽  
Jianya Gong

Small-to-moderate earthquakes (e.g. ≤Mw5.5) occur much more frequently than large ones (e.g. &gt;Mw6.0), yet are difficult to study with InSAR due to their weak surface deformation that are severely contaminated by atmospheric delays. Here we propose a stacking method using time-series SAR images that can effectively suppress atmospheric phase screens and extract weak coseismic deformation in centimeter to sub-centimeter level. Using this method, we successfully derive coseismic surface deformations for three small-to-moderate (Mw∼5) earthquakes in Tibet Plateau and Tienshan region from time-series Sentinel-1 SAR images, with peak line-of-sight deformation ranging from 5–6 mm to 13 mm. We also propose a strategy to downsample interferograms with weak deformation signal based on quadtree mesh obtained from preliminary slip model. With the downsampled datasets, we invert for the centroid locations, fault geometries and slips of these events. Our results demonstrate the potential of using time-series InSAR images to enrich earthquake catalog with geodetic observations for further study of earthquake cycle and active tectonics.


Sign in / Sign up

Export Citation Format

Share Document