scholarly journals Emergence of anthropogenic fire regimes in the southern boreal of Canada

2021 ◽  
Author(s):  
Adam Erickson

While radiative forcing and thus land surface temperatures have been shown to positively correlate with fire severity, precipitation, and lightning strike frequency, the effects of human activity on fire regimes remain difficult to disentangle from geophysical drivers given co-variation between these factors. Here, I analyze fire regimes in the 1919-2012 period across Canada and compare national trends to those of a latitudinal and elevational gradient in a regionexperiencing exponentially increased anthropogenic activity in recent decades. Located along the Canadian Rocky Mountains, the region is intended to serve as a proxy for future continental conditions under current anthropogenic trajectories. Based on the findings, I argue that, for the first time in millennia, fire regimes in the southern boreal zone have shifted on average from large, lightning-caused fires to frequent, small, human-caused fires adjacent to human transportation corridors. While warming is known to produce more severe fuel conditions, human factors such as frequent fire ignitions, active fire suppression, industrial and recreational activity, and forestry (i.e., stand aging) likely explain the reduction in mean fire size and annual area burned. Here, I provide the first evidence of a southern boreal transition to Anthropocene fire regimes without historical analogue, representing a dramatic departure from the conditions in which these forests evolved. With ~28 Pg carbon stored in Canada’s managed forests and interspecific variation in albedo, these novel fire regimes carry direct implications for the Earth’s climate system.

2021 ◽  
Author(s):  
Jie Zhao ◽  
Chao Yue ◽  
Philippe Ciais ◽  
Xin Hou ◽  
Qi Tian

<p>Wildfire is the most prevalent natural disturbance in the North American boreal (BNA) forest and can cause post-fire land surface temperature change (ΔLST<sub>fire</sub>) through biophysical processes. Fire regimes, such as fire severity, fire intensity and percentage of burned area (PBA), might affect ΔLST<sub>fire</sub> through their impacts on post-fire vegetation damage. However, the difference of the influence of different fire regimes on the ΔLST<sub>fire</sub> has not been quantified in previous studies, despite ongoing and projected changes in fire regimes in BNA in association with climate change. Here we employed satellite observations and a space-and-time approach to investigate diurnal ΔLST<sub>fire</sub> one year after fire across BNA. We further examined potential impacts of three fire regimes (i.e., fire intensity, fire severity and PBA) and latitude on ΔLST<sub>fire</sub> by simple linear regression analysis and multiple linear regression analysis in a stepwise manner. Our results demonstrated pronounced asymmetry in diurnal ΔLST<sub>fire</sub>, characterized by daytime warming in contrast to nighttime cooling over most BNA. Such diurnal ΔLST<sub>fire</sub> also exhibits a clear latitudinal pattern, with stronger daytime warming and nighttime cooling one year after fire in lower latitudes, whereas in high latitudes fire effects are almost neutral. Among the fire regimes, fire severity accounted for the most (43.65%) of the variation of daytime ΔLST<sub>fire</sub>, followed by PBA (11.6%) and fire intensity (8.5%). The latitude is an important factor affecting the influence of fire regimes on daytime ΔLST<sub>fire</sub>. The sensitivity of fire intensity and PBA impact on daytime ΔLST<sub>fire</sub> decreases with latitude. But only fire severity had a significant effect on nighttime ΔLST<sub>fire</sub> among three fire regimes. Our results highlight important fire regime impacts on daytime ΔLST<sub>fire</sub>, which might play a critical role in catalyzing future boreal climate change through positive feedbacks between fire regime and post-fire surface warming.</p>


2014 ◽  
Vol 23 (1) ◽  
pp. 1 ◽  
Author(s):  
Chad T. Hanson ◽  
Dennis C. Odion

Research in the Sierra Nevada range of California, USA, has provided conflicting results about current trends of high-severity fire. Previous studies have used only a portion of available fire severity data, or considered only a portion of the Sierra Nevada. Our goal was to investigate whether a trend in fire severity is occurring in Sierra Nevada conifer forests currently, using satellite imagery. We analysed all available fire severity data, 1984–2010, over the whole ecoregion and found no trend in proportion, area or patch size of high-severity fire. The rate of high-severity fire has been lower since 1984 than the estimated historical rate. Responses of fire behaviour to climate change and fire suppression may be more complex than assumed. A better understanding of spatiotemporal patterns in fire regimes is needed to predict future fire regimes and their biological effects. Mechanisms underlying the lack of an expected climate- and time since fire-related trend in high-severity fire need to be identified to help calibrate projections of future fire. The effects of climate change on high-severity fire extent may remain small compared with fire suppression. Management could shift from a focus on reducing extent or severity of fire in wildlands to protecting human communities from fire.


2016 ◽  
Vol 38 (4) ◽  
pp. 391 ◽  
Author(s):  
J. L. Silcock ◽  
G. B. Witt ◽  
R. J. Fensham

Changes to fire regimes associated with European colonisation are implicated in declines in biodiversity and productivity in rangelands globally. However, for many areas there is incomplete knowledge of historical fire regimes and purported changes can become accepted wisdom with little empirical evidence. In the Mulga Lands of south-western Queensland, the dominant narrative implicates reduced fire frequency as a cause of woody vegetation thickening. We present a fire history of the Mulga Lands since pastoral exploration in the 1840s based on a review of explorer and early pastoralist journals, newspaper articles, interviews with long-term landholders and collation of satellite imagery. Fires in mulga communities are infrequent and only occur after at least two years of above-average summer rainfall. The assumption of regular pre-pastoral fires is not supported by available evidence. Since pastoral settlement in the 1860s, fire events affecting >1000 km2 have occurred seven times (1891–1892, 1904, 1918, 1950–1951, 1956–1957, 1976–1979 and 2011–2013), with only the 1950s fires affecting a >10% of the total area of mulga-dominated vegetation. We argue that fire is limited by fuel loads, which are in turn limited by rainfall events occurring only a few times a century. Even in the absence of grazing and active fire suppression fire intervals would be extremely long, perhaps 30–50 years in relatively fire-prone communities and much longer throughout most of the region. Combined with quantitative studies of fire and tree and shrub population dynamics, detailed fire histories will allow for more informed and nuanced debates about the role of fire in rangelands subject to abrupt management upheavals.


Drones ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Elena Ausonio ◽  
Patrizia Bagnerini ◽  
Marco Ghio

The recent huge technological development of unmanned aerial Vehicles (UAVs) can provide breakthrough means of fighting wildland fires. We propose an innovative forest firefighting system based on the use of a swarm of hundreds of UAVs able to generate a continuous flow of extinguishing liquid on the fire front, simulating the effect of rain. Automatic battery replacement and extinguishing liquid refill ensure the continuity of the action. We illustrate the validity of the approach in Mediterranean scrub first computing the critical water flow rate according to the main factors involved in the evolution of a fire, then estimating the number of linear meters of active fire front that can be extinguished depending on the number of drones available and the amount of extinguishing fluid carried. A fire propagation cellular automata model is also employed to study the evolution of the fire. Simulation results suggest that the proposed system can provide the flow of water required to fight low-intensity and limited extent fires or to support current forest firefighting techniques.


2016 ◽  
Vol 25 (11) ◽  
pp. 1117 ◽  
Author(s):  
Marie-Pierre Rogeau ◽  
Mike D. Flannigan ◽  
Brad C. Hawkes ◽  
Marc-André Parisien ◽  
Rick Arthur

Like many fire-adapted ecosystems, decades of fire exclusion policy in the Rocky Mountains and Foothills natural regions of southern Alberta, Canada are raising concern over the loss of ecological integrity. Departure from historical conditions is evaluated using median fire return intervals (MdFRI) based on fire history data from the Subalpine (SUB), Montane (MT) and Upper Foothills (UF) natural subregions. Fire severity, seasonality and cause are also documented. Pre-1948 MdFRI ranged between 65 and 85 years in SUB, between 26 and 35 years in MT and was 39 years in UF. The fire exclusion era resulted in a critical departure of 197–223% in MT (MdFRI = 84–104 years). The departure in UF was 170% (MdFRI = 104 years), while regions of continuous fuels in SUB were departed by 129% (MdFRI = 149 years). The most rugged region of SUB is within its historical range of variation with a departure of 42% (MdFRI = 121 years). More mixed-severity burning took place in MT and UF. SUB and MT are in a lightning shadow pointing to a predominance of anthropogenic burning. A summer fire season prevails in SUB, but occurs from spring to fall elsewhere. These findings will assist in developing fire and forest management policies and adaptive strategies in the future.


2016 ◽  
Author(s):  
Tero Mielonen ◽  
Anca Hienola ◽  
Thomas Kühn ◽  
Joonas Merikanto ◽  
Antti Lipponen ◽  
...  

Abstract. Previous studies have indicated that summer-time aerosol optical depths (AOD) over the southeastern US are dependent on temperature but the reason for this dependence and its radiative effects have so far been unclear. To quantify these effects we utilized AOD and land surface temperature (LST) products from the Advanced Along-Track Scanning Radiometer (AATSR) with observations of tropospheric nitrogen dioxide (NO2) column densities from the Ozone Monitoring Instrument (OMI). Furthermore, simulations of the global aerosol-climate model ECHAM-HAMMOZ have been used to identify the possible processes affecting aerosol loads and their dependence on temperature over the studied region. Our results showed that the level of AOD in the southeastern US is mainly governed by anthropogenic emissions but the observed temperature dependent behaviour is most likely originating from non-anthropogenic emissions. Model simulations indicated that biogenic emissions of volatile organic compounds (BVOC) can explain the observed temperature dependence of AOD. According to the remote sensing data sets, the non-anthropogenic contribution increases AOD by approximately 0.009 ± 0.018 K−1 while the modelled BVOC emissions increase AOD by 0.022 ± 0.002 K−1. Consequently, the regional direct radiative effect (DRE) of the non-anthropogenic AOD is −0.43 ± 0.88 W/m2/K and −0.17 ± 0.35 W/m2/K for clear- and all-sky conditions, respectively. The model estimate of the regional clear-sky DRE for biogenic aerosols is also in the same range: −0.86 ± 0.06 W/m2/K. These DRE values indicate significantly larger cooling than the values reported for other forested regions. Furthermore, the model simulations showed that biogenic emissions increased the number of biogenic aerosols with radius larger than 100 nm (N100, proxy for cloud condensation nuclei) by 28 % per one degree temperature increase. For the total N100, the corresponding increase was 4 % which implies that biogenic emissions could also have a small effect on indirect radiative forcing in this region.


2021 ◽  
Author(s):  
Damon B Lesmeister ◽  
Raymond J. Davis ◽  
Stan G. Sovern ◽  
Zhiqiang Yang

Abstract Background The northern spotted owl (Strix occidentalis caurina) is an Endangered Species Act-listed subspecies that requires forests with old-growth characteristics for nesting. With climate change, large, severe wildfires are expected to be more common and an increasing threat to spotted owl persistence. Understanding fire severity patterns related to nesting forest can be valuable for forest management that supports conservation and recovery, especially if nesting forest functions as fire refugia (i.e., lower fire severity than surrounding landscape). We examined the relationship between fire severity and nesting forests in 472 large wildfires (> 200 ha) that occurred rangewide during 1987–2017. We mapped fire severities (unburned-low, moderate, high) within each fire using relative difference normalized burn ratios and quantified differences in severity between pre-fire nesting forest (edge and interior) and non-nesting forest. We also quantified these relationships within areas of three fire regimes (low severity, very frequent; mixed severity, frequent; high severity, infrequent). Results Averaged over all fires, the interior nesting forest burned at lower severity than edge or non-nesting forest. These relationships were consistent within the low severity, very frequent and mixed severity, frequent fire regime areas. All forest types burned at similar severity within the high severity, infrequent fire regime. During two of the most active wildfire years that also had the largest wildfires occurring in rare and extreme weather conditions, we found a bimodal distribution of fire severity in all forest types. In those years, a higher amount—and proportion—of all forest types burned at high severity. Over the duration of the study, we found a strong positive trend in the proportion of wildfires that burned at high severity in the non-nesting forests, but not in the two nesting forest types. Conclusions Under most wildfire conditions, the microclimate of interior patches of nesting forests likely mitigated fire severity and thus functioned as fire refugia. With changing climates, the future of interior forest as fire refugia is unknown, but trends suggest these older forests can dampen the effect of increased wildfire activity and thus an important component of landscape plans focused on fire resiliency.


Fire ◽  
2018 ◽  
Vol 1 (3) ◽  
pp. 38 ◽  
Author(s):  
Jenny Styger ◽  
Jon Marsden-Smedley ◽  
Jamie Kirkpatrick

The Tasmanian Wilderness World Heritage Area (TWWHA) has globally significant natural and cultural values, some of which are dependent on the absence of fire or the presence of particular fire regimes. Planned burning is currently used to reduce the risk of loss of world heritage values from unplanned fires, but large and damaging fires still occur, with lightning as the primary ignition source. Lightning-caused fire was rare in the TWWHA before 2000. There has since been an increase in both the number of fires following lightning storms and the area burnt by these fires. In the absence of a direct measurement of lightning strike incidence, we tested whether changes in rainfall, soil dryness and fuel load were responsible for these changes in fire incidence and extent. There were no relationships between these variables and the incidence of fires associated with lightning, but the variability in the Soil Dryness Index and the mean of 25% of driest values did predict both the number and area of fires. Thus, it appears that an increase in the proportion of lightning strikes that occur in dry conditions has increased ignition efficiency. These changes have important implications for the management of the TWWHA’s values, as higher projected fuel loads and drier climates could result in a further increase in the number of fires associated with lightning.


2020 ◽  
Vol 472 ◽  
pp. 118220 ◽  
Author(s):  
Jan Ng ◽  
Malcolm P. North ◽  
Alec J. Arditti ◽  
Monica R. Cooper ◽  
James A. Lutz

2019 ◽  
Vol 139 (3) ◽  
pp. 393-406
Author(s):  
Sarah Cogos ◽  
Samuel Roturier ◽  
Lars Östlund

AbstractIn Sweden, prescribed burning was trialed as early as the 1890s for forest regeneration purposes. However, the origins of prescribed burning in Sweden are commonly attributed to Joel Efraim Wretlind, forest manager in the State Forest district of Malå, Västerbotten County, from 1920 to 1952. To more fully understand the role he played in the development of prescribed burning and the extent of his burning, we examined historical records from the State Forest Company’s archive and Wretlind’s personal archive. The data showed that at least 11,208 ha was burned through prescribed burning between 1921 and 1970, representing 18.7% of the Malå state-owned forest area. Wretlind thus created a new forestry-driven fire regime, reaching, during peak years, extents close to historical fire regimes before the fire suppression era, and much higher than present-day burning. His use of prescribed fire to regenerate forests served as a guide for many other forest managers, spreading to all of northern Sweden during the 1950–1960s. Our analysis of Wretlind’s latest accounts also shows how he stood against the evolutions of modern forestry to defend a forestry system based on the reproduction of natural processes, such as fire.


Sign in / Sign up

Export Citation Format

Share Document