Inventory of greenhouse gas emissions and removals in Kaluga region

Author(s):  
Ju. M. Zhukova ◽  
M.Yu. Zavarzina ◽  
T.M. Prokhorova

Climate change, namely global warming, remains at the forefront of the global environmental debate. At present, the international Paris Agreement, which aims to maintain the average temperature of the planet, is in force. The Russian Federation develops, annually updates, publishes and provides a national inventory of anthropogenic emissions and removals by sinks of all greenhouse gases. Each region shall annually conduct an inventory of greenhouse gas emissions and removals on its territory. According to international recommendations and methods for estimating greenhouse gas emissions and removals, the base year should be 1990, because then it becomes possible to carry out an analysis for a multi-year period. Different methodological bases and instructions of the Russian Ministry of Natural Resources are used to estimate GHG emissions and removals. Inventory of greenhouse gas emissions and removals in Kaluga region for the period 1990, 2012-2017 was conducted by JSC "Research Institute of Atmosphere", and for 2018 – LLC Ecoanalitika. The amount of absorbed greenhouse gases was considered for such land categories as forest land, arable land, fodder land, lands of settlements and special purpose lands. GHG emissions were estimated by the sectors "Energy" (Section I), "Industrial Processes and Product Use" (PIP) (Section II), "Agriculture" (Section III) and "Waste" (Section IV). The calculation of greenhouse gas emissions may be of varying complexity. The higher the level of complexity, the more accurate the results. Presented data for 1990, 2012-2018 show that GHG emissions excluding absorption increased by 5 per cent, while emissions excluding absorption decreased by 38 per cent. The presented chart shows that the largest amount of emissions is in the Energy Sector. The results of the assessment of GHG emissions and removals should be used in planning the development of the annual inventory.

2021 ◽  
Vol 933 (1) ◽  
pp. 012007
Author(s):  
K N R Putri ◽  
M I Tjandrawira ◽  
T N Handayani

Abstract Growth in the construction sector could stimulate the development of other sectors. However, the construction industry has been known as a sector that brings a great contributes to energy consumption and produces Greenhouse Gases (GHG) emissions that harm the environment. To support the implementation of sustainable infrastructure, calculating the greenhouse gas emissions produced by a construction project through its lifecycle is necessary. This study analyzes greenhouse gas emissions produced in constructing a three-story precast building. The emission source was calculated from the materials, transportation activities, and erection activities using a Life Cycle Assessment (LCA) approach. The embodied carbon data was adopted from the Inventory of Carbon and Energy (ICE) database. From the analysis that has been carried out, the precast building project generated 124.882.7 kgCO2eq, or 283.18 kgCO2eq GHG per m2 of building. The contribution of emissions from materials, the transportation precast components, and the erection of precast components was 119.649 kgCO2eq (95.81%), 632.41 kgCO2eq (0.51%), and 4,599.30 kgCO2eq (3.68%) respectively.


2019 ◽  
Vol 8 (1) ◽  
Author(s):  
Alexandra M. Collins ◽  
Neal R. Haddaway ◽  
Biljana Macura ◽  
James Thomas ◽  
Nicola Randall ◽  
...  

Abstract Background Reducing greenhouse gas emissions is a vital step in limiting climate change and meeting the goals outlined in the COP 21 Paris Agreement of 2015. Studies have suggested that agriculture accounts for around 11% of total greenhouse gas emissions and the industry has a significant role in meeting international and national climate change reduction objectives. However, there is currently little consensus on the mechanisms that regulate the production and assimilation of greenhouse gases in arable land and the practical factors that affect the process. Practical advice for farmers is often overly general, and models based on the amount of nitrogen fertiliser applied, for example, are used despite a lack of knowledge of how local conditions affect the process, such as the importance of humus content and soil types. Here, we propose a systematic map of the evidence relating to the impact on greenhouse gas flux from the agricultural management of arable land in temperate regions. Methods Using established methods for systematic mapping in environmental sciences we will search for, collate and catalogue research studies relating to the impacts of farming in temperate systems on greenhouse gas emissions. We will search 6 bibliographic databases using a tested search string, and will hand search a web-based search engine and a list of organisational web sites. Furthermore, evidence will be sought from key stakeholders. Search results will then be screened for relevance at title, abstract and full text levels according to a predefined set of eligibility criteria. Consistency checking will be employed to ensure the criteria are being applied accurately and consistently. Relevant studies will then be subjected to coding and meta-data extraction, which will be used to populate a systematic map database describing each relevant study’s settings, methods and measured outcomes. The mapping process will help to identify knowledge gaps (subjects lacking in evidence warranting further primary research) and knowledge clusters (subjects with sufficient studies to allow a useful full systematic review), and will highlight best and suboptimal research methods.


2017 ◽  
Vol 4 (3) ◽  
pp. 62-72
Author(s):  
O. Zhukorsky ◽  
O. Nykyforuk ◽  
N. Boltyk

Aim. Proper development of animal breeding in the conditions of current global problems and the decrease of anthropogenic burden on environment due to greenhouse gas emissions, caused by animal breeding activity, require the study of interaction processes between animal breeding and external climatic conditions. Methods. The theoretical substantiation of the problem was performed based on scientifi c literature, statistical informa- tion of the UN Food and Agriculture Organization and the data of the National greenhouse gas emissions inventory in Ukraine. Theoretically possible emissions of greenhouse gases into atmosphere due to animal breeding in Ukraine and specifi c farms are calculated by the international methods using the statistical infor- mation about animal breeding in Ukraine and the economic-technological information of the activity of the investigated farms. Results. The interaction between the animal breeding production and weather-and-climate conditions of environment was analyzed. Possible vectors of activity for the industry, which promote global warming and negative processes, related to it, were determined. The main factors, affecting the formation of greenhouse gases from the activity of enterprises, aimed at animal breeding production, were characterized. Literature data, statistical data and calculations were used to analyze the role of animal breeding in the green- house gas emissions in global and national framework as well as at the level of specifi c farms with the consid- eration of individual specifi cities of these farms. Conclusions. Current global problems require clear balance between constant development of sustainable animal breeding and the decrease of the carbon footprint due to the activity of animal breeding.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xue Hao ◽  
Yu Ruihong ◽  
Zhang Zhuangzhuang ◽  
Qi Zhen ◽  
Lu Xixi ◽  
...  

AbstractGreenhouse gas (GHG) emissions from rivers and lakes have been shown to significantly contribute to global carbon and nitrogen cycling. In spatiotemporal-variable and human-impacted rivers in the grassland region, simultaneous carbon dioxide, methane and nitrous oxide emissions and their relationships under the different land use types are poorly documented. This research estimated greenhouse gas (CO2, CH4, N2O) emissions in the Xilin River of Inner Mongolia of China using direct measurements from 18 field campaigns under seven land use type (such as swamp, sand land, grassland, pond, reservoir, lake, waste water) conducted in 2018. The results showed that CO2 emissions were higher in June and August, mainly affected by pH and DO. Emissions of CH4 and N2O were higher in October, which were influenced by TN and TP. According to global warming potential, CO2 emissions accounted for 63.35% of the three GHG emissions, and CH4 and N2O emissions accounted for 35.98% and 0.66% in the Xilin river, respectively. Under the influence of different degrees of human-impact, the amount of CO2 emissions in the sand land type was very high, however, CH4 emissions and N2O emissions were very high in the artificial pond and the wastewater, respectively. For natural river, the greenhouse gas emissions from the reservoir and sand land were both low. The Xilin river was observed to be a source of carbon dioxide and methane, and the lake was a sink for nitrous oxide.


2021 ◽  
Author(s):  
Ain Kull ◽  
Iuliia Burdun ◽  
Gert Veber ◽  
Oleksandr Karasov ◽  
Martin Maddison ◽  
...  

<p>Besides water table depth, soil temperature is one of the main drivers of greenhouse gas (GHG) emissions in intact and managed peatlands. In this work, we evaluate the performance of remotely sensed land surface temperature (LST) as a proxy of greenhouse gas emissions in intact, drained and extracted peatlands. For this, we used chamber-measured carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>) data from seven peatlands in Estonia collected during vegetation season in 2017–2020. Additionally, we used temperature and water table depth data measured in situ. We studied relationships between CO<sub>2</sub>, CH<sub>4</sub>, in-situ parameters and remotely sensed LST from Landsat 7 and 8, and MODIS Terra. Results of our study suggest that LST has stronger relationships with surface and soil temperature as well as with ecosystem respiration (R<sub>eco</sub>) over drained and extracted sites than over intact ones. Over the extracted cites the correlation between R<sub>eco</sub> CO<sub>2</sub> and LST is 0.7, and over the drained sites correlation is 0.5. In natural sites, we revealed a moderate positive relationship between LST and CO<sub>2</sub> emitted in hollows (correlation is 0.6) while it is weak in hummocks (correlation is 0.3). Our study contributes to the better understanding of relationships between greenhouse gas emissions and their remotely sensed proxies over peatlands with different management status and enables better spatial assessment of GHG emissions in drainage affected northern temperate peatlands.</p>


2021 ◽  
Vol 16 (3) ◽  
pp. 7-13
Author(s):  
Radik Safin ◽  
Ayrat Valiev ◽  
Valeriya Kolesar

Global climatic changes have a negative impact on the development of all sectors of the economy, including agriculture. However, the very production of agricultural products is one of the most important sources of greenhouse gases entering the atmosphere. Taking into account the need to reduce the “carbon footprint” in food production, a special place is occupied by the analysis of the volume of greenhouse gas emissions and the development of measures for their sequestration in agriculture. One of the main directions for reducing emissions and immobilizing greenhouse gases is the development of special techniques for their sequestration in the soil, including those used in agriculture. Adaptation of existing farming systems for this task will significantly reduce the “carbon footprint” from agricultural production, including animal husbandry. The development of carbon farming allows not only to reduce greenhouse gas emissions, but also to significantly increase the level of soil fertility, primarily by increasing the content of organic matter in them. As a result, it becomes possible, along with the production of crop production, to produce “carbon units” that are sold on local and international markets. The paper analyzes possible greenhouse gas emissions from agriculture and the potential for their sequestration in agricultural soils. The role of various elements of the farming system in solving the problem of reducing the “carbon footprint” is considered and ways of developing carbon farming in the Republic of Tatarstan are proposed


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5664
Author(s):  
Wenjing Wei ◽  
Peter B. Samuelsson ◽  
Anders Tilliander ◽  
Rutger Gyllenram ◽  
Pär G. Jönsson

The primary energy consumption and greenhouse gas emissions from nickel smelting products have been assessed through case studies using a process model based on mass and energy balance. The required primary energy for producing nickel metal, nickel oxide, ferronickel, and nickel pig iron is 174 GJ/t alloy (174 GJ/t contained Ni), 369 GJ/t alloy (485 GJ/t contained Ni), 110 GJ/t alloy (309 GJ/t contained Ni), and 60 GJ/t alloy (598 GJ/t contained Ni), respectively. Furthermore, the associated GHG emissions are 14 tCO2-eq/t alloy (14 tCO2-eq/t contained Ni), 30 t CO2-eq/t alloy (40 t CO2-eq/t contained Ni), 6 t CO2-eq/t alloy (18 t CO2-eq/t contained Ni), and 7 t CO2-eq/t alloy (69 t CO2-eq/t contained Ni). A possible carbon emission reduction can be observed by comparing ore type, ore grade, and electricity source, as well as allocation strategy. The suggested process model overcomes the limitation of a conventional life cycle assessment study which considers the process as a ‘black box’ and allows for an identification of further possibilities to implement sustainable nickel production.


2020 ◽  
pp. 94-110
Author(s):  
N.V. Dvoeglazova ◽  
B.V. Chubarenko ◽  
Y.A. Kozlova

The increase in greenhouse gases in the atmosphere is influenced to a greater extent by a degree of development of industry, a growth of electrification, deforestation, and the burning of fuel for the production of heating and electricity. The contribution of emissions of each of these factors and the ratio of greenhouse gases in them should be taken into account when developing the measures to prevent climate change. According to calculations of emissions from the territory of the Kaliningrad region the burning of fuel and energy resources are supposed to be playing the main role in the greenhouse gas emission from the territory of the Kaliningrad region. In statistical reference books this activity is described as the “activities for the production and distribution of electricity, gas and water.” The usage of this fuel in the energy sector is increasing: from 1742.4 thousand tons of standard fuel in 1991 up to 2193.9 in 2016. Such little increase in total emissions is due to the general technology improvement in the country. Carbon dioxide makes up the bulk of greenhouse gas emissions from the territory of the Kaliningrad region. The percentage of the gases in the total volume is as follows: CO2 - 96.7%, CH4 - 1%, N2 O - 2.3%. Its emissions for the period from 2013 to 2016 varied from 3,757.4 in 2014 to 4,091.7 in 2015 thousand tons of standard fuel, reaching its maximum value in 2015. The estimate presented in this paper is a lower estimate, since it does not take into account emissions from industrial processes, leaks, land use, waste, etc., as well as from some categories of emission sources due to the lack of data on the use of fuel in the Kaliningrad region. Among other things, the calculations of emissions of carbon dioxide, methane and nitrous oxide from the use of fuel by vehicles in 2016, which have shown to be 1.86 times less than from burning of fossil fuels for the same year (2032.87 Gg CO2 eq. and 3914.79 Gg CO2 eq., respectively) and to account for 34.5% of the total emissions, have been made. Moreover, according to the methodology for calculating emissions the factor of carbon dioxide absorption by the region’s forests has been taken into account. The amount of carbon dioxide absorbed by forests has shown to be only 11.9% of the emissions of this gas during the combustion of boiler and furnace fuel.


2020 ◽  
Author(s):  
Theresa Klausner ◽  
Mariano Mertens ◽  
Heidi Huntrieser ◽  
Michal Galkowski ◽  
Gerrit Kuhlmann ◽  
...  

<p>Urban areas are recognised as a significant source of greenhouse gas emissions (GHG), such as carbon dioxide (CO<sub>2</sub>) and methane (CH<sub>4</sub>). The total amount of urban GHG emissions, especially for CH<sub>4</sub>, however, is not well quantified. Here we report on airborne in situ measurements using a Picarro G1301-m analyser aboard the DLR Cessna Grand Caravan to study GHG emissions downwind of the German capital city Berlin. In total, five aircraft-based mass balance experiments were conducted in July 2018 within the Urban Climate Under Change [UC]<sup>2</sup> project. The detection and isolation of the Berlin plume was often challenging because of comparatively small GHG signals above variable atmospheric background concentrations. However, on July 20<sup>th</sup> enhancements of up to 4 ppm CO<sub>2</sub> and 21 ppb CH<sub>4</sub> were observed over a horizontal extent of roughly 45 to 65 km downwind of Berlin. These enhanced mixing ratios are clearly distinguishable from the background and can partly be assigned to city emissions. The estimated CO<sub>2</sub> emission flux of 1.39 ± 0.75 t s<sup>-1 </sup>is in agreement with current inventories, while the CH<sub>4</sub> emission flux of 5.20 ± 1.61 kg s<sup>-1</sup> is almost two times larger than the highest reported value in the inventories. We localized the source area with HYSPLIT trajectory calculations and the high resolution numerical model MECO(n) (down to ~1 km), and investigated the contribution from sewage-treatment plants and waste deposition to CH<sub>4</sub>, which are treated differently by the emission inventories. Our work highlights the importance of a) strong CH<sub>4</sub> sources in the surroundings of Berlin and b) a detailed knowledge of GHG inflow mixing ratios to suitably estimate emission rates.</p>


Sign in / Sign up

Export Citation Format

Share Document