scholarly journals Higher Long-Term Soil Moisture Increases Organic Carbon Accrual Through Microbial Conversion of Organic Inputs

2021 ◽  
Author(s):  
Itamar Shabtai ◽  
Srabani Das ◽  
Thiago Inagaki ◽  
Behrooz Azimzadeh ◽  
Carmen Martínez ◽  
...  

High long-term soil moisture may either stimulate or inhibit soil organic carbon (SOC) losses through changes to mineral and chemical composition, and resultant organo-mineral interactions. Yet, the trade-off between mineralization and accrual of SOC under long-term variation in unsaturated soil moisture remains an uncertainty. In this study, we tested the underexplored relationships between long-term soil moisture and organo-mineral chemical composition, and its implications for SOC persistence. The results provide new insights into SOC accrual mechanisms under different long-term moisture levels commonly observed in well-drained soils. Differences in long-term mean volumetric water content ranging from 0.4 - 0.63 (v/v) on fallow plots in an experimental field in New York, USA, were positively correlated with SOC contents (R2 = 0.228; P = 0.019, n = 20), mineral-associated organic matter (MAOM) (R2 = 0.442; P = 0.001; n = 20) and occluded particulate organic matter (oPOM) contents (R2 = 0.178; P = 0.033; n = 20). Higher long-term soil moisture decreased the relative content of sodium pyrophosphate extractable Fe (R2 = 0.33; P < 0.005; n = 20), increased that of sodium dithionite extractable Fe (R2 = 0.443; P < 0.001; n = 20), and increased the overall importance of non-crystalline Al pools (extracted with sodium pyrophosphate and hydroxylamine extractable) for SOC retention. Higher long-term soil moisture supported up to a four-fold increase in microbial biomass (per unit SOC), and lower C:N ratios in MAOM fractions of high-moisture soils (from C:N 9.5 to 9, R2 = 0.267, P = 0.011, n =20). This was reflected by a 15% and 10% greater proportion of oxidized carboxylic-C to aromatic-C and O-alkyl C, respectively, as measured with 13C-NMR, and a more pronounced FTIR signature of N-containing proteinaceous compounds in high-moisture MAOM fractions, reflective of microbial metabolites. SOC accrual increased with increasing soil moisture (P = 0.019), exchangeable Ca2+ (P = 0.013), and pyrophosphate-extractable Al content (P = 0.0001) and Al/Fe ratio (P = 0.017). Taken together, our results show that high long-term soil moisture resulted in SOC accrual by enhancing microbial conversion of plant inputs to metabolites that interact with reactive minerals.

2021 ◽  
Author(s):  
Itamar Shabtai ◽  
Srabani Das ◽  
Thiago Inagaki ◽  
Behrooz Azimzadeh ◽  
Carmen Martínez ◽  
...  

High long-term soil moisture may either stimulate or inhibit soil organic carbon (SOC) losses through changes to mineral and chemical composition, and resultant organo-mineral interactions. Yet, the trade-off between mineralization and accrual of SOC under long-term variation in unsaturated soil moisture remains an uncertainty. In this study, we tested the underexplored relationships between long-term soil moisture and organo-mineral chemical composition, and its implications for SOC persistence. The results provide new insights into SOC accrual mechanisms under different long-term moisture levels commonly observed in well-drained soils. Differences in long-term mean volumetric water content ranging from 0.4 - 0.63 (v/v) on fallow plots in an experimental field in New York, USA, were positively correlated with SOC contents (R2 = 0.228; P = 0.019, n = 20), mineral-associated organic matter (MAOM) (R2 = 0.442; P = 0.001; n = 20) and occluded particulate organic matter (oPOM) contents (R2 = 0.178; P = 0.033; n = 20). Higher long-term soil moisture decreased the relative content of sodium pyrophosphate extractable Fe (R2 = 0.33; P < 0.005; n = 20), increased that of sodium dithionite extractable Fe (R2 = 0.443; P < 0.001; n = 20), and increased the overall importance of non-crystalline Al pools (extracted with sodium pyrophosphate and hydroxylamine extractable) for SOC retention. Higher long-term soil moisture supported up to a four-fold increase in microbial biomass (per unit SOC), and lower C:N ratios in MAOM fractions of high-moisture soils (from C:N 9.5 to 9, R2 = 0.267, P = 0.011, n =20). This was reflected by a 15% and 10% greater proportion of oxidized carboxylic-C to aromatic-C and O-alkyl C, respectively, as measured with 13C-NMR, and a more pronounced FTIR signature of N-containing proteinaceous compounds in high-moisture MAOM fractions, reflective of microbial metabolites. SOC accrual increased with increasing soil moisture (P = 0.019), exchangeable Ca2+ (P = 0.013), and pyrophosphate-extractable Al content (P = 0.0001) and Al/Fe ratio (P = 0.017). Taken together, our results show that high long-term soil moisture resulted in SOC accrual by enhancing microbial conversion of plant inputs to metabolites that interact with reactive minerals.


Soil Research ◽  
1995 ◽  
Vol 33 (6) ◽  
pp. 975 ◽  
Author(s):  
A Golchin ◽  
P Clarke ◽  
JM Oades ◽  
JO Skjemstad

Soil samples were obtained from the surface horizons of five untilled sites and adjacent sites under short- and long-term cultivation. The soil samples were fractionated based on density and organic materials were concentrated in various fractions which enabled comparative chemical composition of the organic materials in cultivated and uncultivated sites by solid-state C-13 CP/MAS NMR spectroscopy. Changes in the nature of organic carbon with cultivation were different in different soils and resulted from variations in the chemistry of carbon inputs to the soils and a greater extent of decomposition of organic materials in cultivated soils. Differences in the chemical composition of organic carbon between cultivated and uncultivated soils resided mostly in organic materials occluded within aggregates, whereas the chemistry of organic matter associated with clay particles showed only small changes. The results indicate a faster decomposition of O-alkyl C in the cultivated soils. Wet aggregate stability, mechanically dispersible clay and modulus of rupture tests were used to assess the effects of cultivation on structural stability of soils. In four of five soils, the virgin sites and sites which had been under long-term pasture had a greater aggregate stability than the cultivated sites. Neither total organic matter nor total O-alkyl C content was closely correlated with aggregate stability, suggesting that only a part of soil carbon or carbohydrate is involved in aggregate stability. The fractions of carbon and O-alkyl C present in the form of particulate organic matter occluded within aggregates were better correlated with aggregate stability (r = 0.86** and 0.88**, respectively). Cultivation was not the dominant factor influencing water-dispersible clay across the range of soil types used in this study. The amount of dispersible clay was a function of total clay content and the percentage of clay dispersed was controlled by factors such as clay mineralogy, CaCO3 and organic matter content of soils. The tendency of different soils for hard-setting and crusting, as a result of structural collapse, was reflected in the modulus of rupture (MOR). The cultivated sites had significantly higher MOR than their non-tilled counterparts. The soils studied had different MOR due to differences in their physical and chemical properties.


2018 ◽  
Vol 64 (No. 11) ◽  
pp. 557-563 ◽  
Author(s):  
Yunfa Qiao ◽  
Shujie Miao ◽  
Yingxue Li ◽  
Xin Zhong

Monoculture is common to meet commodity grain requirements in Northeast China. The effect of long-term monoculture on chemical composition of soil organic carbon (SOC) remains unclear. This study was done to evaluate how changes in chemical compositions of SOC responded to long-term monoculture. To achieve this objective, the chemical compositions of SOC in maize-soybean rotation, continuous soybean and continuous maize were characterized with the nuclear magnetic resonance technique. Two main components, O-alkyl and aromatic C, showed a wider range of relative proportion in monoculture than rotation system across soil profiles, but no difference was observed between two monoculture systems. Pearson’s analysis showed a significant relationship between plant-C and OCH<sub>3</sub>/NCH, alkyl C or alkyl O-C-O, and the A/O-A was closely related to plant-C. The findings indicated a greater influence of monoculture on the chemical composition of SOC compared to rotation, but lower response to crop species.


2008 ◽  
Vol 8 (18) ◽  
pp. 5551-5563 ◽  
Author(s):  
J. Sciare ◽  
K. Oikonomou ◽  
O. Favez ◽  
E. Liakakou ◽  
Z. Markaki ◽  
...  

Abstract. Long-term (5-year) measurements of Elemental Carbon (EC) and Organic Carbon (OC) in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island). A multi-analytical approach (including thermal, optical, and thermo-optical techniques) was applied for these EC and OC measurements. Light absorbing dust aerosols were shown to poorly contribute (+12% on a yearly average) to light absorption coefficient (babs) measurements performed by an optical method (aethalometer). Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September). The contribution of biomass burning to the concentrations of EC and OC was shown to be rather small (20 and 14%, respectively, on a yearly basis), although this contribution could be much higher on a monthly basis and showed important seasonal and interannual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC) have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12), suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA) formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5μm) showed that the mass contribution of organic matter (POM) was found to be essentially invariable during the year (monthly average of 26±5%).


1979 ◽  
Vol 59 (3) ◽  
pp. 763-768 ◽  
Author(s):  
J. R. MOYER

The effect of soil organic matter (OM), clay content, temperature, and soil moisture on dose levels of trifluralin (α,α,α-trifluoro-2,6-dinitro-N,N-dipropyl-p-toluidine) required for 90% control of wild oats (Avena fatua L.) was assessed in growth chamber experiments. In the first experiment, where soil moisture was constant, variation in soil OM accounted for 94% of the variability in trifluralin dose rates required for 90% reduction in fresh weight of wild oats (GR90) whereas clay content and temperature had no significant effect. In a second experiment, where temperature was constant, required dose rates were slightly higher at low and high moisture levels than at intermediate levels. Variation in OM explained 80% of the variability in GR90 while the inclusion of moisture and (moisture)2 terms in the multiple regression analysis explained an additional 7% of the variability. The results indicate that trifluralin efficacy was primarily related to OM content and that current recommendations for trifluralin could be improved if based on this parameter. An even more accurate trifluralin dose could be predicted from OM content and soil moisture content but the improvement in efficacy would be slight. Soil OM content determined the amount of trifluralin, dinitramine (N4,N4-diethyl-α,α,α-trifluoro-3,5-dinitrotoluene-2,4-diamine), and fluchloralin [N(2-chloroethyl)-2,6-dinitro-N-propyl-4-(trifluoromethyl)-aniline] adsorbed to soil. This suggests that dose recommendations and efficacy of dinitramine and fluchloralin could be predicted from OM content.


1989 ◽  
Vol 69 (1) ◽  
pp. 39-47 ◽  
Author(s):  
A. NDAYEGAMIYE ◽  
D. CÔTÉ

Chemical and biological properties were evaluated in 1987 on an acidic silty loam soil following a long-term field study established in 1978 and cultivated with silage corn. Treatments included a control, solid cattle manure (20, 40 and 60 Mg ha−1 FYM) and pig slurry (60, 120 m3 ha−1 SLU) applied every 2 yr and annually, respectively. No fertilizer was applied. The results of this study have shown that neither treatment significantly affected soil pH values, total-N contents and C:N ratios compared to the control. The cation exchange capacity (CEC) of the soil was significantly higher with FYM treatment than with control or SLU application. The highest rates of FYM and SLU have also increased (P < 0.05) soil organic carbon, microbial activity and potentially mineralizable nitrogen. The soil microflora populations (bacteria, fungi, actinomycetes, ammonifiers and nitrifiers) were greatly improved by both treatments. There were no significant differences in organic matter content or the relative amount of humic and fulvic acids between FYM and SLU plots. In spite of these results, FYM application (40 and 60 Mg ha−1) did affect more significantly the distribution of organic carbon in HA and the E4/E6 quotients than SLU additions. Humic acids extracted from SLU amended soils had a lower C content and lower E4/E6 ratios than humic acids from FYM soils. Long-term SLU application did not contribute to decreased organic matter content, CEC and humic acids yield, probably because of optimal organic residues returned to the soil by the corn crops. The FYM application generally improved soil chemical and biological properties. For a sustainable soil productivity, long-term SLU application should then be avoided in rotation in which small amounts of plant residues are returned, especially on soils with low organic matter contents. Key words: Organic matter, microbial activity, nitrogen mineralization potential, CEC, solid cattle manure, pig slurry


2008 ◽  
Vol 8 (2) ◽  
pp. 6949-6982 ◽  
Author(s):  
J. Sciare ◽  
K. Oikonomou ◽  
O. Favez ◽  
Z. Markaki ◽  
E. Liakakou ◽  
...  

Abstract. Long-term (5-yr) measurements of Black Carbon (BC) and Organic Carbon (OC) in bulk aerosols are presented here for the first time in the Mediterranean Basin (Crete Island). A multi-analytical approach (including thermal, optical, and thermo-optical techniques) was applied for these BC and OC measurements. Light absorbing dust aerosols have shown to poorly contribute (+17% on a yearly average) to light absorption coefficient (babs) measurements performed by an optical method (aethalometer). Long-range transport of agricultural waste burning from European countries surrounding the Black Sea was shown for each year during two periods (March–April and July–September). The contribution of biomass burning to the concentrations of BC and OC has shown to be rather small (20 and 14%, respectively, on a yearly basis), although this contribution could be much higher on a monthly basis and is expected a high intra and inter annual variability. By removing the biomass burning influence, our data revealed an important seasonal variation of OC, with an increase by almost a factor of two for the Spring months of May and June, whereas BC was found to be quite stable throughout the year. Preliminary measurements of Water Soluble Organic Carbon (WSOC) have shown that the monthly mean WSOC/OC ratio remains stable throughout the year (0.45±0.12), suggesting that the partitioning between water soluble and water insoluble organic matter is not significantly affected by biomass burning and secondary organic aerosol (SOA) formation. A chemical mass closure performed in the fine mode (Aerodynamic Diameter, A.D.<1.5 μm) showed that the mass contribution of organic matter (POM) was found to be essentially invariable during the year (monthly average of 26±5%).


Author(s):  
Clever Briedis ◽  
Jeff Baldock ◽  
João C. de Moraes Sá ◽  
Josiane B. dos Santos ◽  
Janine McGowan ◽  
...  

Soil Research ◽  
1999 ◽  
Vol 37 (1) ◽  
pp. 151 ◽  
Author(s):  
J. O. Skjemstad ◽  
J. A. Taylor ◽  
L. J. Janik ◽  
S. P. Marvanek

Comparisons of soil samples from virgin sites or sites recently planted to sugarcane (new) with sites that had been under cane production for many years (old) were made to investigate the potential impact of cane production on soil organic carbon (OC) levels and chemistry. The comparisons showed that very little change had occurred in total OC and in ‘light’ fraction (<1·6 Mg/m3). Increasing pyrophosphate extractability throughout the profile at some sites, as a result of cultivation, however, suggested that the organic matter generally became more ‘humified’ with long-term cane production. Evidence is presented for a redistribution of OC within profiles under cane production. Old, well-established cane sites had soils with lower OC levels in the surface horizons and higher levels in the subsoils relative to new sites. The overall chemistry of the soil organic matter, as indicated by solid state 13C nuclear magnetic resonance spectroscopy, did not change significantly at each site even though between site differences were large. Some soils contained substantial amounts of charcoal which was of pre-cane origin. In some of the coarse-textured soils, smaller amounts of charcoal produced during the burning of cane appeared to accumulate below the A1 horizons in the profiles. It also appeared likely that the redistribution of carbon in the upper horizons of some soils resulted from the movement of charcoal within the profile, probably as a result of tillage.


2013 ◽  
Vol 152 (1) ◽  
pp. 153-165 ◽  
Author(s):  
K. MÜLLER ◽  
U. DICKHOEFER ◽  
L. LIN ◽  
T. GLINDEMANN ◽  
C. WANG ◽  
...  

SUMMARYThe grassland steppe of Inner Mongolia is traditionally used for sheep grazing. However, overgrazing reduced vegetation cover in winter, thereby increasing soil erosion and consequently, degradation of the steppe vegetation. Grazing intensity (GI) is still the most important factor in pasture management. Hence, the aim of the current study was to evaluate the effect of GI on grassland and sheep performance. A grazing experiment was conducted from July until September in 2005, 2006 and 2007 in which six different GI ranging from very light (GI 1), light (GI 2), light-moderate (GI 3), moderate (GI 4) and heavy (GI 5) to very heavy (GI 6) were tested. Each GI treatment comprised two adjacent plots that were alternately used for grazing or hay-making each year. Variables measured included herbage mass (HM) and chemical composition, digestibility of ingested organic matter (dOM), organic matter intake (OMI) and live weight gain (LWG) of sheep. The HM decreased significantly with increasing GI from 1·01 t (GI 1) to 0·45 t dry matter (DM)/ha (GI 6). There were only minor effects of GI on chemical composition and digestibility of standing herbage. Moreover, dOM, OMI and hence, digestible OMI did not differ between GI. Across all study years, LWG of sheep was not influenced by GI so that LWG per hectare increased with increasing GI, reaching a maximum of 730 g/d at GI 6 compared with 181 g/d at GI 1. However, a strong decrease in LWG per sheep with increasing stocking rate was found in 2005 when annual rainfall was less than half of the long-term average, resulting in a similar LWG per hectare across the range of tested stocking rates. The results therefore show that intensive grazing does not reduce growth of individual animals in most years, but increases LWG per unit of land area and thus, income of farmers. The alternating use of pastures for grazing or hay-making might have mitigated the negative effects of heavy grazing on herbage and animal performance. Nevertheless, high GI may negatively affect grassland productivity in the long term and the lack of HM on offer on heavy grazed pastures in dry years will require supplement feeding at the end of the vegetation period or the untimely sale of animals.


Sign in / Sign up

Export Citation Format

Share Document