scholarly journals California’s Food-Energy-Water System: An Open Source Simulation Model of Adaptive Surface and Groundwater Management in the Central Valley

2020 ◽  
Author(s):  
Harrison Zeff ◽  
Andrew L. Hamilton ◽  
Keyvan Malek ◽  
Jonathan Herman ◽  
Jonathan Cohen ◽  
...  

This study introduces the California Food-Energy-Water System (CALFEWS) simulation model to describe the integrated, multi-sector dynamics that emerge from the coordinated management of surface and groundwater supplies throughout California’s Central Valley. The CALFEWS simulation framework links the operation of state-wide, interbasin transfer projects (i.e., State Water Project, Central Valley Project) with coordinated water management strategies abstracted to the scale of irrigation/water districts. This study contributes a historic baseline (October 1996 – September 2016) evaluation of the model’s performance against observations, including reservoir storage, inter-basin transfers, environmental endpoints, and groundwater banking accounts. State-aware, rules-based representations of critical component systems enable CALFEWS to simulate adaptive management responses to alternative climate, infrastructure, and regulatory scenarios. Moreover, CALFEWS has been designed to maintain interoperability with electric power dispatch and agricultural production models. As such, CALFEWS provides a platform to evaluate internally consistent scenarios for the integrated management of water supply, energy generation, and food production.

Author(s):  
Harrison B. Zeff ◽  
Andrew L. Hamilton ◽  
Keyvan Malek ◽  
Jonathan D. Herman ◽  
Jonathan S. Cohen ◽  
...  

2011 ◽  
Vol 4 (3) ◽  
pp. 341-348 ◽  
Author(s):  
Guy B. Kyser ◽  
Vanelle Peterson ◽  
Steve B. Orloff ◽  
Steven D. Wright ◽  
Joseph M. DiTomaso

AbstractYellow starthistle is the most widespread broadleaf invasive plant in the western United States, and it is particularly prevalent in California. Prior to the registration of aminopyralid in 2005, the standard for chemical control of yellow starthistle was the herbicide clopyralid. We report on a compilation of several independent trials comparing the efficacy of aminopyralid and clopyralid on yellow starthistle. Treatments were applied at several rates and timings at 11 locations in four states between 2001 and 2007. Treatments were made pre-emergence and postemergence at the seedling and rosette stages of yellow starthistle. Results showed that aminopyralid, even at the low rate of 18 g ae ha−1, provided nearly complete control of yellow starthistle when treatments were made at the seedling stage. However, less consistent control (80 to 100%) resulted with applications made at the pre-emergence and rosette stages. At the seedling stage, aminopyralid is about four times more effective on yellow starthistle compared to clopyralid, based on the rate of acid equivalent. In the Central Valley of California, complete control was obtained at the lowest registered rate (53 g ae ha−1) when applications were made from December through February. At two locations we also evaluated control of the poisonous native plant coast fiddleneck. Although clopyralid does not adequately control coast fiddleneck, aminopyralid provided almost complete control when applied in the winter growing season. Applications of aminopyralid at the rosette stage resulted in a two-fold increase in annual forage grass biomass the following year. These results indicate that aminopyralid is a valuable tool for land managers and can play an important role in integrated management strategies for yellow starthistle and coast fiddleneck.


Plants ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 126
Author(s):  
Judit Barroso ◽  
Nicholas G. Genna

Russian thistle (Salsola tragus L.) is a persistent post-harvest issue in the Pacific Northwest (PNW). Farmers need more integrated management strategies to control it. Russian thistle emergence, mortality, plant biomass, seed production, and crop yield were evaluated in spring wheat and spring barley planted in 18- or 36-cm row spacing and seeded at 73 or 140 kg ha−1 in Pendleton and Moro, Oregon, during 2018 and 2019. Russian thistle emergence was lower and mortality was higher in spring barley than in spring wheat. However, little to no effect of row spacing or seeding rate was observed on Russian thistle emergence or mortality. Russian thistle seed production and plant biomass followed crop productivity; higher crop yield produced higher Russian thistle biomass and seed production and lower crop yield produced lower weed biomass and seed production. Crop yield with Russian thistle pressure was improved in 2018 with 18-cm rows or by seeding at 140 kg ha−1 while no effect was observed in 2019. Increasing seeding rates or planting spring crops in narrow rows may be effective at increasing yield in low rainfall years of the PNW, such as in 2018. No effect may be observed in years with higher rainfall than normal, such as in 2019.


Author(s):  
Mahfouz M. M. Abd-Elgawad

Abstract Background Potato represents Egypt’s largest vegetable export crop. Many plant-parasitic nematodes (PPNs) are globally inflicting damage to potato plants. In Egypt, their economic significance considerably varies according to PPN distribution, population levels, and pathogenicity. Main body This review article highlights the biology, ecology, and economic value of the PPN control viewpoint. The integration of biological control agents (BCAs), as sound and safe potato production practice, with other phytosanitary measures to manage PPNs is presented for sustainable agriculture. A few cases of BCA integration with such other options as synergistic/additive PPN management measures to upgrade crop yields are reviewed. Yet, various attributes of BCAs should better be grasped so that they can fit in at the emerging and/or existing integrated management strategies of potato pests. Conclusion A few inexpensive biocontrol products, for PPNs control on potato, versus their corresponding costly chemical nematicides are gathered and listed for consideration. Hence, raising awareness of farmers for making these biologicals familiar and easy to use will promote their wider application while offering safe and increased potato yield.


2011 ◽  
Vol 41 (2) ◽  
pp. 309-320 ◽  
Author(s):  
David W. Savage ◽  
David L. Martell ◽  
B. Mike Wotton

Ecological values are an important aspect of sustainable forest management, but little attention has been paid to maintaining these values when using traditional linear programming (LP) forest management planning models in uncertain planning environments. We embedded an LP planning model that specifies when and how much to harvest in a simulation model of a “managed” flammable forest landscape. The simulation model was used to evaluate two strategies for dealing with fire-related uncertainty when managing mature and old forest areas. The two seral stage areas were constrained in the LP planning model to a minimum of 10% of the total forest area and the strategies were evaluated under four representative fire regimes. We also developed a risk analysis tool that can be used by forest managers that wish to incorporate fire-related uncertainty in their decision-making. We found that use of the LP model would reduce the areas of the mature and old forest to their lower bound and fire would further reduce the seral areas below those levels, particularly when the mean annual burn fraction exceeds 0.45% per annum. Increasing the minimum area required (i.e., the right-hand side of the constraint) would increase the likelihood of satisfying the minimum area requirements.


2013 ◽  
Vol 31 (4) ◽  
pp. 823-832 ◽  
Author(s):  
A. Derakhshan ◽  
J. Gherekhloo

Specific knowledge about the dormancy, germination, and emergence patterns of weed species aids the development of integrated management strategies. Laboratory studies were conducted to determine the effect of several environmental factors on seed germination and seedling emergence of Cyperus difformis. Germination of freshly harvested seeds was inhibited by darkness; however, when seeds were subsequently transferred to complete light they germinated readily. Our results showed that 2 wk of cold stratification overcome the light requirement for germination. Seeds of C. difformis were able to germinate over a broad range of temperatures (25/15, 30/20, 35/25, and 40/30 ºC day/night). The response of germination rate to temperature was described as a non-linear function. Based on model outputs, the base, the optimum and the ceiling temperatures were estimated as 14.81, 37.72 and 45 ºC, respectively. A temperature of 120 ºC for a 5 min was required to inhibit 50% of maximum germination. The osmotic potential and salinity required for 50% inhibition of maximum germination were -0.47 MPa and 135.57 mM, respectively. High percentage of seed germination (89%) was observed at pH=6 and decreased to 12% at alkaline medium (pH 9) pH. Seeds sown on the soil surface gave the greatest percentage of seedling emergence, and no seedlings emerged from seeds buried in soil at depths of 1 cm.


2006 ◽  
Vol 63 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Jon T. Schnute ◽  
Rowan Haigh

Abstract Fisheries management often relies heavily on precautionary reference points estimated from complex statistical models. An alternative approach uses management strategies defined by mathematical algorithms that calculate controls, like catch quotas, directly from the observed data. We combine these two distinct paradigms into a common framework using arguments from the historical development of quantum mechanics. In fisheries, as in physics, the core of the argument lies in the technical details. We illustrate the process of designing a management algorithm similar to one actually used by the International Whaling Commission. Reference points and surplus production models play a conceptual role in defining management strategies, even if marine populations do not obey such simplistic rules. Physicists have encountered similar problems in formulating quantum theory, where mathematical objects with seemingly unrealistic properties generate results of great practical importance.


2018 ◽  
Vol 23 (11) ◽  
pp. 2087 ◽  
Author(s):  
Peng-Yu Jin ◽  
Lu Tian ◽  
Lei Chen ◽  
Xiao-Yue Hong

Understanding pest species composition and their geographic distribution of important spider mites is fundamental and indispensable to establish an integrated pest management program. From a long-term survey during 2008–2017 in mainland China, we found that Tetranychus truncatus was the most frequently sampled Tetranychus spider mite (48.5%), followed by T. pueraricola (21.2%), T. kanzawai (12.5%), T. urticae (red) (5.7%) and T. urticae (green) (4.5%). Among them, T. truncatus was the major mite pest in the north of China. T. kanzawai was the dominant species in the Middle and Lower Reaches of the Yangtze River Region and T. pueraricola was the most important species in the southwest region. Other common and serious pests include Amphitetranychus viennensis (6.8%) and Panonychus citri (3.8%). This pattern was largely different from that in 2002–2004, when T. urticae (green and red) was believed to be the most serious mite pest. The factors involved in the change of species composition are not clear and need more exploration. We suggested that the increasing corn planting range may be partly responsible for the conversion of dominant species from other spider mites to T. truncatus. Further research on the mechanisms underlying the change of dominant species will help develop integrated management strategies.


Sign in / Sign up

Export Citation Format

Share Document