scholarly journals Tutorial: Applying Machine Learning in Behavioral Research

2020 ◽  
Author(s):  
Stephanie Turgeon ◽  
Marc Lanovaz

Machine learning algorithms hold promise in revolutionizing how educators and clinicians make decisions. However, researchers in behavior analysis have been slow to adopt this methodology to further develop their understanding of human behavior and improve the application of the science to problems of applied significance. One potential explanation for the scarcity of research is that machine learning is not typically taught as part of training programs in behavior analysis. This tutorial aims to address this barrier by promoting increased research using machine learning in behavior analysis. We present how to apply the random forest, support vector machine, stochastic gradient descent, and k-nearest neighbors algorithms on a small dataset to better identify parents who would benefit from a behavior analytic interactive web training. These step-by-step applications should allow researchers to implement machine learning algorithms with novel research questions and datasets.

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8764 ◽  
Author(s):  
Siroj Bakoev ◽  
Lyubov Getmantseva ◽  
Maria Kolosova ◽  
Olga Kostyunina ◽  
Duane R. Chartier ◽  
...  

Industrial pig farming is associated with negative technological pressure on the bodies of pigs. Leg weakness and lameness are the sources of significant economic loss in raising pigs. Therefore, it is important to identify the predictors of limb condition. This work presents assessments of the state of limbs using indicators of growth and meat characteristics of pigs based on machine learning algorithms. We have evaluated and compared the accuracy of prediction for nine ML classification algorithms (Random Forest, K-Nearest Neighbors, Artificial Neural Networks, C50Tree, Support Vector Machines, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) and have identified the Random Forest and K-Nearest Neighbors as the best-performing algorithms for predicting pig leg weakness using a small set of simple measurements that can be taken at an early stage of animal development. Measurements of Muscle Thickness, Back Fat amount, and Average Daily Gain were found to be significant predictors of the conformation of pig limbs. Our work demonstrates the utility and relative ease of using machine learning algorithms to assess the state of limbs in pigs based on growth rate and meat characteristics.


2021 ◽  
Vol 4 (2) ◽  
pp. p10
Author(s):  
Yanmeng Liu

The success of health education resources largely depends on their readability, as the health information can only be understood and accepted by the target readers when the information is uttered with proper reading difficulty. Unlike other populations, children feature limited knowledge and underdeveloped reading comprehension, which poses more challenges for the readability research on health education resources. This research aims to explore the readability prediction of health education resources for children by using semantic features to develop machine learning algorithms. A data-driven method was applied in this research:1000 health education articles were collected from international health organization websites, and they were grouped into resources for kids and resources for non-kids according to their sources. Moreover, 73 semantic features were used to train five machine learning algorithms (decision tree, support vector machine, k-nearest neighbors algorithm, ensemble classifier, and logistic regression). The results showed that the k-nearest neighbors algorithm and ensemble classifier outperformed in terms of area under the operating characteristic curve sensitivity, specificity, and accuracy and achieved good performance in predicting whether the readability of health education resources is suitable for children or not.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background Accurate prediction models for whether patients on the verge of a psychiatric criseis need hospitalization are lacking and machine learning methods may help improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate the accuracy of ten machine learning algorithms, including the generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact. We also evaluate an ensemble model to optimize the accuracy and we explore individual predictors of hospitalization. Methods Data from 2084 patients included in the longitudinal Amsterdam Study of Acute Psychiatry with at least one reported psychiatric crisis care contact were included. Target variable for the prediction models was whether the patient was hospitalized in the 12 months following inclusion. The predictive power of 39 variables related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts was evaluated. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared and we also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis and the five best performing algorithms were combined in an ensemble model using stacking. Results All models performed above chance level. We found Gradient Boosting to be the best performing algorithm (AUC = 0.774) and K-Nearest Neighbors to be the least performing (AUC = 0.702). The performance of GLM/logistic regression (AUC = 0.76) was slightly above average among the tested algorithms. In a Net Reclassification Improvement analysis Gradient Boosting outperformed GLM/logistic regression by 2.9% and K-Nearest Neighbors by 11.3%. GLM/logistic regression outperformed K-Nearest Neighbors by 8.7%. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was in most cases modest. The results show that a predictive accuracy similar to the best performing model can be achieved when combining multiple algorithms in an ensemble model.


2019 ◽  
Author(s):  
Matthijs Blankers ◽  
Louk F. M. van der Post ◽  
Jack J. M. Dekker

Abstract Background: It is difficult to accurately predict whether a patient on the verge of a potential psychiatric crisis will need to be hospitalized. Machine learning may be helpful to improve the accuracy of psychiatric hospitalization prediction models. In this paper we evaluate and compare the accuracy of ten machine learning algorithms including the commonly used generalized linear model (GLM/logistic regression) to predict psychiatric hospitalization in the first 12 months after a psychiatric crisis care contact, and explore the most important predictor variables of hospitalization. Methods: Data from 2,084 patients with at least one reported psychiatric crisis care contact included in the longitudinal Amsterdam Study of Acute Psychiatry were used. The accuracy and area under the receiver operating characteristic curve (AUC) of the machine learning algorithms were compared. We also estimated the relative importance of each predictor variable. The best and least performing algorithms were compared with GLM/logistic regression using net reclassification improvement analysis. Target variable for the prediction models was whether or not the patient was hospitalized in the 12 months following inclusion in the study. The 39 predictor variables were related to patients’ socio-demographics, clinical characteristics and previous mental health care contacts. Results: We found Gradient Boosting to perform the best (AUC=0.774) and K-Nearest Neighbors performing the least (AUC=0.702). The performance of GLM/logistic regression (AUC=0.76) was above average among the tested algorithms. Gradient Boosting outperformed GLM/logistic regression and K-Nearest Neighbors, and GLM outperformed K-Nearest Neighbors in a Net Reclassification Improvement analysis, although the differences between Gradient Boosting and GLM/logistic regression were small. Nine of the top-10 most important predictor variables were related to previous mental health care use. Conclusions: Gradient Boosting led to the highest predictive accuracy and AUC while GLM/logistic regression performed average among the tested algorithms. Although statistically significant, the magnitude of the differences between the machine learning algorithms was modest. Future studies may consider to combine multiple algorithms in an ensemble model for optimal performance and to mitigate the risk of choosing suboptimal performing algorithms.


Author(s):  
L. S. Koriashkina ◽  
H. V. Symonets

Purpose. Detecting toxic comments on YouTube video hosting under training videos by classifying unstructured text using a combination of machine learning methods. Methodology. To work with the specified type of data, machine learning methods were used for cleaning, normalizing, and presenting textual data in a form acceptable for processing on a computer. Directly to classify comments as “toxic”, we used a logistic regression classifier, a linear support vector classification method without and with a learning method – stochastic gradient descent, a random forest classifier and a gradient enhancement classifier. In order to assess the work of the classifiers, the methods of calculating the matrix of errors, accuracy, completeness and F-measure were used. For a more generalized assessment, a cross-validation method was used. Python programming language. Findings. Based on the assessment indicators, the most optimal methods were selected – support vector machine (Linear SVM), without and with the training method using stochastic gradient descent. The described technologies can be used to analyze the textual comments under any training videos to detect toxic reviews. Also, the approach can be useful for identifying unwanted or even aggressive information on social networks or services where reviews are provided. Originality. It consists in a combination of methods for preprocessing a specific type of text, taking into account such features as the possibility of having a timecode, emoji, links, and the like, as well as in the adaptation of classification methods of machine learning for the analysis of Russian-language comments. Practical value. It is about optimizing (simplification) the comment analysis process. The need for this processing is due to the growing volumes of text data, especially in the field of education through quarantine conditions and the transition to distance learning. The volume of educational Internet content already needs to automate the processing and analysis of feedback, over time this need will only grow.


Author(s):  
Ravita Chahar ◽  
Deepinder Kaur

In this paper machine learning algorithms have been discussed and analyzed. It has been discussed considering computational aspects in different domains. These algorithms have the capability of building mathematical and analytical model. These models may be helpful in the decision-making process. This paper elaborates the computational analysis in three different ways. The background and analytical aspect have been presented with the learning application in the first phase. In the second phase detail literature has been explored along with the pros and cons of the applied techniques in different domains. Based on the literatures, gap identification and the limitations have been discussed and highlighted in the third phase. Finally, computational analysis has been presented along with the machine learning results in terms of accuracy. The results mainly focus on the exploratory data analysis, domain applicability and the predictive problems. Our systematic analysis shows that the applicability of machine learning is wide and the results may be improved based on these algorithms. It is also inferred from the literature analysis that at the applicability of machine learning algorithm has the capability in the performance improvement. The main methods discussed here are classification and regression trees (CART), logistic regression, naïve Bayes (NB), k-nearest neighbors (KNN), support vector machine (SVM) and decision tree (DT). The domain covered mainly are disease detection, business intelligence, industry automation and sentiment analysis.


Learning analytics refers to the machine learning to provide predictions of learner success and prescriptions to learners and teachers. The main goal of paper is to proposed APTITUDE framework for learning data classification in order to achieve an adaptation and recommendations a course content or flow of course activities. This framework has applied model for student learning prediction based on machine learning. The five machine learning algorithms are used to provide learning data classification: random forest, Naïve Bayes, k-nearest neighbors, logistic regression and support vector machines


Author(s):  
Stuti Pandey ◽  
Abhay Kumar Agarwal

Cardiovascular disease prediction is a research field of healthcare which depends on a large volume of data for making effective and accurate predictions. These predictions can be more effective and accurate when used with machine learning algorithms because it can disclose all the concealed facts which are helpful in making decisions. The processing capabilities of machine learning algorithms are also very fast which is almost infeasible for human beings. Therefore, the work presented in this research focuses on identifying the best machine learning algorithm by comparing their performances for predicting cardiovascular diseases in a reasonable time. The machine learning algorithms which have been used in the presented work are naïve Bayes, support vector machine, k-nearest neighbors, and random forest. The dataset which has been utilized for this comparison is taken from the University of California, Irvine (UCI) machine learning repository named “Heart Disease Data Set.”


Algorithms ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 201
Author(s):  
Charlyn Nayve Villavicencio ◽  
Julio Jerison Escudero Macrohon ◽  
Xavier Alphonse Inbaraj ◽  
Jyh-Horng Jeng ◽  
Jer-Guang Hsieh

Early diagnosis is crucial to prevent the development of a disease that may cause danger to human lives. COVID-19, which is a contagious disease that has mutated into several variants, has become a global pandemic that demands to be diagnosed as soon as possible. With the use of technology, available information concerning COVID-19 increases each day, and extracting useful information from massive data can be done through data mining. In this study, authors utilized several supervised machine learning algorithms in building a model to analyze and predict the presence of COVID-19 using the COVID-19 Symptoms and Presence dataset from Kaggle. J48 Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbors and Naïve Bayes algorithms were applied through WEKA machine learning software. Each model’s performance was evaluated using 10-fold cross validation and compared according to major accuracy measures, correctly or incorrectly classified instances, kappa, mean absolute error, and time taken to build the model. The results show that Support Vector Machine using Pearson VII universal kernel outweighs other algorithms by attaining 98.81% accuracy and a mean absolute error of 0.012.


Sign in / Sign up

Export Citation Format

Share Document