scholarly journals Awareness is required for autonomic performance monitoring in instrumental learning: Evidence from cardiac activity

2021 ◽  
Author(s):  
Lina Skora ◽  
James J A Livermore ◽  
Federica Nisini ◽  
Ryan Bradley Scott

Performance monitoring is a vital aspect of successful learning and decision-making. Performance errors are reflected in the autonomic nervous system, indicating the need for behavioural adjustment. As part of this response, errors cause a pronounced deceleration in heart rate, compared to correct decisions, and precede explicit awareness of the stimulus-outcome contingencies. However, it is unknown whether those signals are present and able to inform instrumental learning without conscious awareness of the stimuli, where explicit performance monitoring is disabled. With mixed evidence for unconscious instrumental learning, determining the presence or absence of autonomic performance monitoring can shed light on its feasibility.Here, we employed an unconscious instrumental conditioning task, where successful learning is evidenced by increased approach responses to visually masked rewarding stimuli, and avoidance of punishing stimuli. An electrocardiogram (ECG) assessed continuous cardiac activity throughout the learning process. Natural fluctuations of awareness under masking permitted us to contrast learning and cardiac deceleration for trials with, versus without, conscious stimulus awareness. Our results demonstrate that on trials where participants did not consciously perceive the stimulus, there was no differentiation in cardiac response between rewarding and punishing feedback, indicating absence of performance monitoring. In contrast, consciously perceived stimuli elicited the expected deceleration upon error commission. This result suggests that, in unconscious instrumental learning, the brain cannot acquire implicit knowledge of stimulus values, rendering correct instrumental choices impossible. This evidence provides support for the notion that consciousness might be required for flexible adaptive behaviour, and that this may be mediated through bodily signals.

2018 ◽  
Author(s):  
Nicolas Legrand ◽  
Olivier Etard ◽  
Anaïs Vandevelde ◽  
Mélissa Pierre ◽  
Fausto Viader ◽  
...  

AbstractEffort to suppress past experiences from conscious awareness can lead to forgetting. It remains largely unknown whether emotions, including their physiological causes, are also impacted by such memory suppression. In two studies, we measured in healthy participants the aftereffect of suppressing negative memories on cardiac response. Results of Study 1 revealed that an efficient control of memories was associated with a long-term inhibition of the cardiac deceleration normally induced by disgusting stimuli. Attempts to suppress sad memories, on the opposite, aggravated cardiac response, an effect that was largely related to the inability to forget this specific material. In Study 2, we found using electroencephalography that a prominent neural marker of inhibitory control, a suppression of the 5-9 Hz frequency band, was related to the subsequent inhibition of the cardiac response. These results demonstrate that suppressing memories also influence the cardiac system, opening new avenues for treating intrusive memories.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nicolas Legrand ◽  
Olivier Etard ◽  
Anaïs Vandevelde ◽  
Melissa Pierre ◽  
Fausto Viader ◽  
...  

Abstract Efforts to exclude past experiences from conscious awareness can lead to forgetting. Memory suppression is central to affective disorders, but we still do not really know whether emotions, including their physiological causes, are also impacted by this process in normal functioning individuals. In two studies, we measured the after-effects of suppressing negative memories on cardiac response in healthy participants. Results of Study 1 revealed that efficient control of memories was associated with long-term inhibition of the cardiac deceleration that is normally induced by disgusting stimuli. Attempts to suppress sad memories, by contrast, aggravated the cardiac response, an effect that was closely related to the inability to forget this specific material. In Study 2, electroencephalography revealed a reduction in power in the theta (3–8 Hz), alpha (8–12 Hz) and low-beta (13–20 Hz) bands during the suppression of unwanted memories, compared with their voluntary recall. Interestingly, however, the reduction of power in the theta frequency band during memory control was related to a subsequent inhibition of the cardiac response. These results provide a neurophysiological basis for the influence of memory control mechanisms on the cardiac system, opening up new avenues and questions for treating intrusive memories using motivated forgetting.


2021 ◽  
Author(s):  
Magdalena Senderecka ◽  
Jakub M. Szewczyk

This study examined whether error-related brain responses are sensitive to the degree of error inevitability, a factor which seriously affects the attribution of moral responsibility for an error. We were especially interested in error-related negativity (ERN), which is an electrophysiological marker of subjective evaluation of error significance and its motivational value. In addition, we focused on post-error slowing, which is a post-error behavioural adjustment. We hypothesized that the more avoidable the error, and consequently the greater its significance and motivational value, the larger the ERN amplitude, the shorter the ERN latency, and the greater the post-error slowing should be. To elicit errors whose inevitability varies, we used the stop-signal task. The inevitability of errors in this task depends on whether the stop signal is presented before or after a point beyond which the completion of the movement cannot be cancelled. Consistent with our hypotheses, we found that the higher motivational value of avoidable errors was indeed reflected in larger and earlier ERNs. Moreover, avoidable errors led to greater adjustments in subsequent behaviour aimed at preventing similar failures in the future. These findings show that early performance monitoring, as reflected by ERN, involves an evaluation of error inevitability. In a broader perspective, these results indicate that the elementary basis for distinguishing between culpable (avoidable) and non-culpable (unavoidable) errors may occur in the brain several dozen milliseconds after error commission.


2003 ◽  
Vol 17 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Michal Kuniecki ◽  
Robert Barry ◽  
Jan Kaiser

Abstract The effect of stimulus valence was examined in the evoked cardiac response (ECR) elicited by the exposition of neutral and negative slides as well as by an innocuous auditory stimulus presented on the affective foregrounds generated by the slides. The exposition of the aversive slide produced prolonged cardiac deceleration in comparison with the neutral slide. Similar prolonged deceleration accompanied exposition of the neutral auditory stimulus on the negative visual foreground in comparison with the neutral foreground. We interpret these results as an autonomic correlate of extended stimulus processing associated with the affective stimulus. The initial deceleration response, covering two or three slower heart beats, may be prolonged for several seconds before HR reaches the baseline level again. In such a case the evoked cardiac deceleration can be functionally divided into two parts: the reflexive bradycardia (ECR1) elicited by neutral stimuli and a late decelerative component (LDC). We can speculate that the latter is associated with an additional voluntary continuation of processing of the stimulus. This must involve some cognitive aspect different from the mental task performance which leads to the accelerative ECR2, and we suggest that processing of a stimulus with negative valence is involved in generating the LDC.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Martin L. Pall

Abstract Millimeter wave (MM-wave) electromagnetic fields (EMFs) are predicted to not produce penetrating effects in the body. The electric but not magnetic part of MM-EMFs are almost completely absorbed within the outer 1 mm of the body. Rodents are reported to have penetrating MM-wave impacts on the brain, the myocardium, liver, kidney and bone marrow. MM-waves produce electromagnetic sensitivity-like changes in rodent, frog and skate tissues. In humans, MM-waves have penetrating effects including impacts on the brain, producing EEG changes and other neurological/neuropsychiatric changes, increases in apparent electromagnetic hypersensitivity and produce changes on ulcers and cardiac activity. This review focuses on several issues required to understand penetrating effects of MM-waves and microwaves: 1. Electronically generated EMFs are coherent, producing much higher electrical and magnetic forces then do natural incoherent EMFs. 2. The fixed relationship between electrical and magnetic fields found in EMFs in a vacuum or highly permeable medium such as air, predicted by Maxwell’s equations, breaks down in other materials. Specifically, MM-wave electrical fields are almost completely absorbed in the outer 1 mm of the body due to the high dielectric constant of biological aqueous phases. However, the magnetic fields are very highly penetrating. 3. Time-varying magnetic fields have central roles in producing highly penetrating effects. The primary mechanism of EMF action is voltage-gated calcium channel (VGCC) activation with the EMFs acting via their forces on the voltage sensor, rather than by depolarization of the plasma membrane. Two distinct mechanisms, an indirect and a direct mechanism, are consistent with and predicted by the physics, to explain penetrating MM-wave VGCC activation via the voltage sensor. Time-varying coherent magnetic fields, as predicted by the Maxwell–Faraday version of Faraday’s law of induction, can put forces on ions dissolved in aqueous phases deep within the body, regenerating coherent electric fields which activate the VGCC voltage sensor. In addition, time-varying magnetic fields can directly put forces on the 20 charges in the VGCC voltage sensor. There are three very important findings here which are rarely recognized in the EMF scientific literature: coherence of electronically generated EMFs; the key role of time-varying magnetic fields in generating highly penetrating effects; the key role of both modulating and pure EMF pulses in greatly increasing very short term high level time-variation of magnetic and electric fields. It is probable that genuine safety guidelines must keep nanosecond timescale-variation of coherent electric and magnetic fields below some maximum level in order to produce genuine safety. These findings have important implications with regard to 5G radiation.


Much has been said at the symposium about the pre-eminent role of the brain in the continuing emergence of man. Tobias has spoken of its explosive enlargement during the last 1 Ma, and how much of its enlargement in individual ontogeny is postnatal. We are born before our brains are fully grown and ‘wired up ’. During our long adolescence we build up internal models of the outside world and of the relations of parts of our bodies to it and to one another. Neurons that are present at birth spread their dendrites and project axons which acquire their myelin sheaths, and establish innumerable contacts with other neurons, over the years. New connections are formed; genetically endowed ones are stamped in or blanked off. People born without arms may grow up to use their toes in skills that are normally manual. Tobias, Darlington and others have stressed the enormous survival value of adaptive behaviour and the ‘positive feedback’ relation between biological and cultural evolution. The latter, the unique product of the unprecedentedly rapid biological evolution of big brains, advances on a time scale unknown to biological evolution.


2021 ◽  
pp. 1-11
Author(s):  
Najmeh Pakniyat ◽  
Mohammad Hossein Babini ◽  
Vladimir V. Kulish ◽  
Hamidreza Namazi

BACKGROUND: Analysis of the heart activity is one of the important areas of research in biomedical science and engineering. For this purpose, scientists analyze the activity of the heart in various conditions. Since the brain controls the heart’s activity, a relationship should exist among their activities. OBJECTIVE: In this research, for the first time the coupling between heart and brain activities was analyzed by information-based analysis. METHODS: Considering Shannon entropy as the indicator of the information of a system, we recorded electroencephalogram (EEG) and electrocardiogram (ECG) signals of 13 participants (7 M, 6 F, 18–22 years old) in different external stimulations (using pineapple, banana, vanilla, and lemon flavors as olfactory stimuli) and evaluated how the information of EEG signals and R-R time series (as heart rate variability (HRV)) are linked. RESULTS: The results indicate that the changes in the information of the R-R time series and EEG signals are strongly correlated (ρ=-0.9566). CONCLUSION: We conclude that heart and brain activities are related.


2020 ◽  
Author(s):  
Natalia Barrios ◽  
Matheus Farias ◽  
Marta A Moita

AbstractAdjusting to a dynamic environment involves fast changes in the body’s internal state, characterized by coordinated alterations in brain activity, physiological and motor responses. Threat-induced defensive states are a classic example of coordinated adjustment of bodily responses, being cardiac regulation one of the best characterized in vertebrates. A great deal is known regarding the neural basis of invertebrate defensive behaviours, mainly in Drosophila melanogaster. However, whether physiological changes accompany these remains unknown. Here, we set out to describe the internal bodily state of fruit flies upon an inescapable threat and found cardiac acceleration during running and deceleration during freezing. In addition, we found that freezing leads to increased cardiac pumping from the abdomen towards the head-thorax, suggesting mobilization of energy resources. Concordantly, threat-triggered freezing reduces sugar levels in the hemolymph and renders flies less resistant to starvation. The cardiac responses observed during freezing were absent during spontaneous immobility, underscoring the active nature of freezing response. Finally, we show that baseline cardiac activity predicts the amount of freezing upon threat. This work reveals a remarkable similarity with the cardiac responses of vertebrates, suggesting an evolutionarily convergent defensive state in flies. Our findings are at odds with the widespread view that cardiac deceleration while freezing has first evolved in vertebrates and that it is energy sparing. Investigating the physiological changes coupled to defensive behaviours in the fruit fly has revealed that freezing is costly, yet accompanied by cardiac deceleration, and points to heart activity as a key modulator of defensive behaviours.


2017 ◽  
pp. 98-127
Author(s):  
Riitta Hari ◽  
Aina Puce

This chapter focuses on different types of biological and nonbiological artifacts in MEG and EEG recordings, and discusses methods for their recognition and removal. Examples are given of various physiological artifacts, including eye movements, eyeblinks, saccades, muscle, and cardiac activity. Nonbiological artifacts, such as power-line noise, are also demonstrated. Some examples are given to illustrate how these unwanted signals can be identified and removed from MEG and EEG signals with methods such as independent component analysis (as applied to EEG data) and temporal signal-space separation (applied to MEG data). However, prevention of artifacts is always preferable to removing or compensating for them post hoc during data analysis. The chapter concludes with a discussion of how to ensure that signals are emanating from the brain and not from other sources.


CJEM ◽  
2019 ◽  
Vol 21 (6) ◽  
pp. 739-743 ◽  
Author(s):  
Nicole Beckett ◽  
Paul Atkinson ◽  
Jacqueline Fraser ◽  
Ankona Banerjee ◽  
James French ◽  
...  

ABSTRACTObjectivesPoint-of-care ultrasound (POCUS) is used increasingly during resuscitation. The aim of this study was to assess whether combining POCUS and electrocardiogram (ECG) rhythm findings better predicts outcomes during cardiopulmonary resuscitation in the emergency department (ED).MethodsWe completed a health records review on ED cardiac arrest patients who underwent POCUS. Primary outcome measurements included return of spontaneous circulation (ROSC), survival to hospital admission, and survival to hospital discharge.ResultsPOCUS was performed on 180 patients; 45 patients (25.0%; 19.2%–31.8%) demonstrated cardiac activity on initial ECG, and 21 (11.7%; 7.7%–17.2%) had cardiac activity on initial POCUS; 47 patients (26.1%; 20.2%–33.0%) achieved ROSC, 18 (10.0%; 6.3%–15.3%) survived to admission, and 3 (1.7%; 0.3%–5.0%) survived to hospital discharge. As a predictor of failure to achieve ROSC, ECG had a sensitivity of 82.7% (95% CI 75.2%–88.7%) and a specificity of 46.8% (32.1%–61.9%). Overall, POCUS had a higher sensitivity of 96.2% (91.4%–98.8%) but a similar specificity of 34.0% (20.9%–49.3%). In patients with ECG-asystole, POCUS had a sensitivity of 98.18% (93.59%–99.78%) and a specificity of 16.00% (4.54%–36.08%). In patients with pulseless electrical activity, POCUS had a sensitivity of 86.96% (66.41%–97.22%) and a specificity of 54.55% (32.21%–75.61%). Similar patterns were seen for survival to admission and discharge. Only 0.8% (0.0–4.7%) of patients with ECG-asystole and standstill on POCUS survived to hospital discharge.ConclusionThe absence of cardiac activity on POCUS, or on both ECG and POCUS together, better predicts negative outcomes in cardiac arrest than ECG alone. No test reliably predicted survival.


Sign in / Sign up

Export Citation Format

Share Document