scholarly journals Kinetic, sorption isotherms, pseudo-first-order model and pseudo-second-order model studies of Cu(II) and Pb(II) using defatted Moringa oleifera seed powder

2016 ◽  
Vol 5 (2) ◽  
pp. 71-78
Author(s):  
Keno David Kowanga ◽  
◽  
Erastus Gatebe ◽  
Godfrey Omare Mauti ◽  
Eliakim Mbaka Mauti ◽  
...  

In the recent decades, there has been a concern on heavy metals in waste water and high cost of conventional methods of removing heavy metals, for this reason search on adsorbents of biological origin which is low cost and efficient is necessary. In this work defatted Moringa oleifera seed powder was studied as a potential alternative adsorbent for removal of Cu(II) and Pb(II) from aqueous solution. Physicochemical parameters such as pH, contact time, adsorption kinetics and initial ions concentration adsorption capacity using sorption models were evaluated. The results showed that the optimum pH for biosorption of Cu(II) was 6.5 while that of Pb(II) was 5.5. Contact time for Cu(II) was observed to occur after 30 min while that of Pb(II) occurred after 40 min. FTIR analysis revealed that defatted Moringa oleifera seed biomass had presence of amino, carboxyl, hydroxyl and carbonyl groups, these groups were responsible for biosorption of Cu(II) and Pb(II) from aqueous solution. Biosorption kinetic data fitted well with pseudo-second-order kinetic model (r2 ≤ 0.9997) giving equilibrium rate constant (k2) of 0.0350±0.0275 g mg−1 min−1 for Cu (II) loaded biomass and 0.0206±0.0114 g mg−1 min−1 for Pb (II) loaded biomass; the biosorption isotherms for the biosorbent fitted well with Freundlich isotherm model than with Langmuir isotherm model. However, the separation factor RL of Langmuir model was between 0 and 1 indicating favourable sorption process and the low value of mean sorption energy of 9.19×10-2 kJ from D-R model showed that the forces of attraction involved were Van der Waal forces indicating the process of adsorption was physical adsorption. In conclusion, the study revealed that defatted Moringa oleifera seed is an efficient biosorbent for removal of Cu(II) and Pb(II) from aqueous solution.

2018 ◽  
Vol 18 (2) ◽  
pp. 265 ◽  
Author(s):  
Behzad Shamsi Zadeh ◽  
Hossein Esmaeili ◽  
Rauf Foroutan

Heavy metals are soluble in the environment and can be dangerous for many species. So, removal of heavy metals from the water and wastewater is an important process. In this study, an adsorbent made of eggshell powder was employed to remove cadmium ions from aqueous solution. A number of parameters were studied including pH of the aqueous solution, adsorbent dosage, contact time, the initial concentration of cadmium ion and mixing rate. The best efficiency for the removal of Cd(II) was obtained 96% using this adsorbent. The optimal parameters were ambient temperature of 30 °C, mixing rate of 200 rpm, pH of 9, an adsorbent dosage of 5 g/L and initial concentration of cadmium was 200 ppm. In order to study the kinetics of adsorbent, the pseudo-first-order and pseudo-second-order kinetic models and intra-particle diffusion model were applied. According to the pre-determined correlation coefficients (R2), the pseudo-second-order kinetic model showed a better correlation between the kinetic behaviors of the adsorbent. Furthermore, to study the equilibrium behavior of adsorbent, Langmuir and Freundlich models used and both models showed high efficiency in isotherm behavior of the adsorbent. So, this adsorbent can be used as a natural and cheap adsorbent.


2011 ◽  
Vol 236-238 ◽  
pp. 155-158
Author(s):  
Li Fang Zhang ◽  
Shu Juan Dai ◽  
Ying Ying Chen

In this study, Biosorption of hexavalent chromium ions from aqueous solution by using biomass ofAspergillus nigerwas investigated. Different parameters such as initial pH, biosorbent amount, contact time and temperature were explored. The biosorption of Cr (VI) ions was highly pH dependent and the optimum pH for biosorption of Cr (VI) ions was found to be 2.0. Biosorption capacity of Cr (VI) ions decreased with increased biosorbent dosage. The biosorption equilibrium was established in about 120min of contact time. Equilibrium uptake of Cr (VI) ions onto biomass increased from 12.57 mg/g at 20°C to 19.48 mg/g at 40 °C for 20mg/L Cr (VI) ions concentration. The biosorption process followed the pseudo-second order kinetic model and the correlation coefficients from the pseudo-second order model were all higher than 0.997 in all studied temperatures. These results suggest that the biomass ofAspergillus nigeris a promising biosorbent for removal of chromium (VI) ions from the wastewater.


2015 ◽  
Vol 11 (9) ◽  
pp. 3876-3887
Author(s):  
Prakash Bhila Wagh ◽  
V.S Shrivastava ◽  
V.S Shrivastava

 The kinetics and equilibrium study of crystal violate dye adsorption on mixture of activated carbon (PWCAC) and (CSAC) was studied. The use of low cost ecofriendly adsorbent has been investigated as an ideal alternative to the current expensive methods of removing of dye from aqueous solution. This study was done by batch adsorption techniques. The quantitative adsorption kinetic and equilibrium parameter for crystal violate dye were studied using uv-visible adsorption spectroscopy. The effect of initial dye concentration, pH,adsorbent dose, temperature, particle size were determined to find the optimal condition for adsorption. The percentage removal of dye was found to be most effective at pH10and contact time 120 min and at an adsorbent dose 4 g/L of dye. The study indicates that’s, the percentage removal of dye increases with increasing initial dye concentration, adsorption dose and contact time and attains equilibrium at optimum conditions.The equilibrium study of adsorption of crystal violate dye on to mixture of activated carbon was investigated using pseudo first order and pseudo second order kinetic models. The adsorption kinetics was found to follow pseudo second order kinetic model. The equilibrium adsorption data of crystal violate dye on PWCAC and CSAC mixture was analyzed by Langmuir and Freundlich adsorption model. The results show that the Langmuir model provides the best correlation.


2015 ◽  
Vol 11 (9) ◽  
pp. 3876-3887
Author(s):  
Prakash Bhila Wagh ◽  
V.S Shrivastava ◽  
V.S Shrivastava

 The kinetics and equilibrium study of crystal violate dye adsorption on mixture of activated carbon (PWCAC) and (CSAC) was studied. The use of low cost ecofriendly adsorbent has been investigated as an ideal alternative to the current expensive methods of removing of dye from aqueous solution. This study was done by batch adsorption techniques. The quantitative adsorption kinetic and equilibrium parameter for crystal violate dye were studied using uv-visible adsorption spectroscopy. The effect of initial dye concentration, pH,adsorbent dose, temperature, particle size were determined to find the optimal condition for adsorption. The percentage removal of dye was found to be most effective at pH10and contact time 120 min and at an adsorbent dose 4 g/L of dye. The study indicates that’s, the percentage removal of dye increases with increasing initial dye concentration, adsorption dose and contact time and attains equilibrium at optimum conditions.The equilibrium study of adsorption of crystal violate dye on to mixture of activated carbon was investigated using pseudo first order and pseudo second order kinetic models. The adsorption kinetics was found to follow pseudo second order kinetic model. The equilibrium adsorption data of crystal violate dye on PWCAC and CSAC mixture was analyzed by Langmuir and Freundlich adsorption model. The results show that the Langmuir model provides the best correlation.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Öznur Dülger ◽  
Fatma Turak ◽  
Kadir Turhan ◽  
Mahmure Özgür

Sumac Leaves (SL) (Rhus Coriaria L. ) were investigated as an inexpensive and effective adsorbent for the adsorption of methylene blue (MB) from aqueous solution. The effects of initial dye concentration, initial solution pH, phases contact time, and adsorbent dose on the adsorption of MB on SL were investigated. The amount of dye adsorbed was found to vary with initial solution pH, Sumac Leaves dose, MB concentration, and phases contact time. The Langmuir and Freundlich adsorption models were evaluated using the experimental data and the experimental results showed that the Langmuir model fits better than the Freundlich model. The maximum adsorption capacity was found to be 151.69 mg/g from the Langmuir isotherm model at 25°C. The value of the monolayer saturation capacity of SL was comparable to the adsorption capacities of some other adsorbent materials for MB. The adsorption rate data were analyzed according to the pseudo-first order kinetic and pseudo-second order kinetic models and intraparticle diffusion model. It was found that kinetic followed a pseudo-second order model.


2013 ◽  
Vol 367 ◽  
pp. 45-49
Author(s):  
Ying Hong ◽  
Ze Hui Zhong ◽  
You Shi Liu

Chitosan nanoparticles were prepared by crosslinkingusing TPP. SEM showed that chitosan nanoparticles were successfully obtained.The adsorption characteristics of chitosan nanoparticles were evaluated. Theresults demonstrated that chitosan nanoparticles were suitable for adsorbent toremoval Pb2+. The parameters for the adsorption of Pb2+by chitosan nanoparticles were also determined. It was shown that chitosannanoparticles were fit for Langmuir’s isotherm model and that the adsorptionkinetics of Pb2+ described by the pseudo-second-order model could bebest.


Author(s):  
Tasrina R. Choudhury ◽  
Snahasish Bhowmik ◽  
M. S. Rahman ◽  
Mithun R. Nath ◽  
F. N. Jahan ◽  
...  

Sawdust supported nano-zerovalent (NZVI/SD) iron was synthesized by treating sawdust with ferrous sulphate followed by reduction with NaBH4. The NZVI/SD was characterized by SEM, XRD, FTIR and Chemical method. Adsorption of As (III) by NZVI/SD was investigated and the maximum uptake of As (III) was found at pH value of 7.74 and equilibrium time of 3 hrs. The adsorption isotherm modelling revealed that the equilibrium adsorption data were better fitted with the Langmuir isotherm model compared with the Freundlich Isotherm model. This study revealed that the maximum As (III) ions adsorption capacity was found to be 12.66 mg/g for using NZVI/SD adsorbent. However, the kinetics data were tested by pseudo-first-order and pseudo-second-order kinetic models; and it was observed that the adsorption data could be well fitted with pseudo-second-order kinetics for As (III) adsorption onto NZVI/SD depending on both adsorbate concentration and adsorption sites. The result of this study suggested that NZVI/SD could be developed as a prominent environment-friendly adsorbent for the removal of As (III) ions from aqueous systems.


2012 ◽  
Vol 27 ◽  
pp. 11-18
Author(s):  
Timi Tarawou ◽  
Michael Horsfall

The adsorption of chromium (VI) ions from aqueous solution was studied using pure and carbonized fluted pumpkin waste biomass (FPWB). The kinetic data shows a pseudo-first-order mechanism with rate constants of 1.26 × 10-2 and 1.933 × 10-2 mg g-1 min-1 for the pure and carbonized FPWB, respectively. While the pseudo-second-order mechanism has rate constants of 0.93 × 10-1 and 1.33 × 10-1 mg g-1 min-1 for the pure and carbonized waste biomass respectively. The pseudo-second order kinetic model was found to be more suitable for describing the experimental data based on the correlation coefficient values (R2) of 0.9975 and 0.9994 obtained for pure waste biomass (PWB) and carbonized waste biomass (CWB), respectively. The results obtained from this study show that PWB and CWB have very high removal capacity for chromium (VI) from aqueous solution over a range of reaction conditions. Thus, fluted pumpkin waste biomass (Telfairia occidentalis Hook F) is a potential sorbent for the treatment of industrial effluents containing chromium (VI) contaminant.DOI: http://dx.doi.org/10.3126/jncs.v27i1.6436 J. Nepal Chem. Soc., Vol. 27, 2011 11-18Uploaded date: 16 July, 2012


Author(s):  
Jurgita Seniūnaitė ◽  
Rasa Vaiškūnaitė ◽  
Kristina Bazienė

Research studies on the adsorption kinetics are conducted in order to determine the absorption time of heavy metals on coffee grounds from liquid. The models of adsorption kinetics and adsorption diffusion are based on mathe-matical models (Cho et al. 2005). The adsorption kinetics can provide information on the mechanisms occurring be-tween adsorbates and adsorbents and give an understanding of the adsorption process. In the mathematical modelling of processes, Lagergren’s pseudo-first- and pseudo-second-order kinetics and the intra-particle diffusion models are usually applied. The mathematical modelling has shown that the kinetics of the adsorption process of heavy metals (copper (Cu) and lead (Pb)) is more appropriately described by the Lagergren’s pseudo-second-order kinetic model. The kinetic constants (k2Cu = 0.117; k2Pb = 0,037 min−1) and the sorption process speed (k2qeCu = 0.0058–0.4975; k2qePb = 0.021–0.1661 mg/g per min) were calculated. After completing the mathematical modelling it was calculated that the Langmuir isotherm better reflects the sorption processes of copper (Cu) (R2 = 0.950), whilst the Freundlich isotherm – the sorption processes of lead (Pb) (R2 = 0.925). The difference between the mathematically modelled and experimen-tally obtained sorption capacities for removal of heavy metals on coffee grounds from aqueous solutions is 0.059–0.164 mg/l for copper and 0.004–0.285 mg/l for lead. Residual concentrations of metals in a solution showed difference of 1.01 and 0.96 mg/l, respectively.


2020 ◽  
Vol 168 ◽  
pp. 00050
Author(s):  
Vadym Korovin ◽  
Yurii Pohorielov ◽  
Yurii Shestak ◽  
Oleksandr Valiaiev ◽  
Jose Luis Cortina

Kinetics of scandium recovery by TVEX containing tributyl phosphate was studied from the clarified leaching solution of salt chlorinator cake. To assess the contribution of each diffusion phase, experimental data were analyzed using a graphic method. To define the contribution of chemical interaction into the scandium extraction process, recovery kinetics was quantitatively described using pseudo-first order, pseudo-second order kinetic models and Elovich equation in linearized form. It was established that recovery kinetics was most accurately described with the pseudo-second-order model.


Sign in / Sign up

Export Citation Format

Share Document