scholarly journals Legumes crop rotation can improve food and nutrition security in Nepal

2013 ◽  
Vol 3 ◽  
pp. 123-127 ◽  
Author(s):  
S Pokhrel ◽  
S Pokhrel

An intensive review of the literatures was made to access the importance of crop rotation for sustainable agriculture in Nepal. Result shows that an appropriate crop sequences improves soil fertility, reduces fertilizer cost, controls soil erosion, makes environment healthy, increases crop yields and develop sustainable crop production in the long run. Based on the study, identification of location specific crop sequences, their extension and evaluation of the impact on food production are recommended. Agronomy Journal of Nepal (Agron JN) Vol. 3. 2013, Page 123-127 DOI: http://dx.doi.org/10.3126/ajn.v3i0.9014

Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 405
Author(s):  
Yaxin Sang ◽  
Juan-Carlos Mejuto ◽  
Jianbo Xiao ◽  
Jesus Simal-Gandara

Agro-industries should adopt effective strategies to use agrochemicals such as glyphosate herbicides cautiously in order to protect public health. This entails careful testing and risk assessment of available choices, and also educating farmers and users with mitigation strategies in ecosystem protection and sustainable development. The key to success in this endeavour is using scientific research on biological pest control, organic farming and regulatory control, etc., for new developments in food production and safety, and for environmental protection. Education and research is of paramount importance for food and nutrition security in the shadow of climate change, and their consequences in food production and consumption safety and sustainability. This review, therefore, diagnoses on the use of glyphosate and the associated development of glyphosate-resistant weeds. It also deals with the risk assessment on human health of glyphosate formulations through environment and dietary exposures based on the impact of glyphosate and its metabolite AMPA—(aminomethyl)phosphonic acid—on water and food. All this to setup further conclusions and recommendations on the regulated use of glyphosate and how to mitigate the adverse effects.


2016 ◽  
Vol 1 (90) ◽  
pp. 71-76
Author(s):  
Y. Soroka ◽  
Y.A. Tarariko ◽  
R.V. Saydak

The purpose of research - a comprehensive assessment of the potential agroresource North-Central Steppe of Ukraine, set limitipuyuschie factors to improve the productivity of agriculture. During the robot conventional research methods were used: field, laboratory, analytical, comparative, kompyuternoy simulation modeling, and system generalization of the results. Experiental part held in a stationary field experiment Zaporozhye experimental station Of Institute oil culture NAAS Studies have shown that the systematic application of fertilizers on a range of agro, chemical, physical, agrohimichesih indicators studied soil has Visokiy potential fertility. Surfacing Systems of soil on crop rotation productivity impact is immaterial. One can only note the trend for the most minor ways of loosening the soil with mulch. The test crop rotation composition simulates one of the most intensive farming options. Indicators of productivity and the variation coefficient of variation it indicates a fairly low level of realization of the potential fertility of chernozem ordinary, which is explained on the one hand, the steady downward trend in the annual water balance, on the other hand, promotion of a balance of humus, nitrogen, phosphorus and potassium fertilizers at the studied systems. The dependence of the yield of the agro-climatic conditions considered by the example of the main cereal region - winter wheat. It was found that the greatest impact on the implementation of crop production potential are hydrothermal conditions of May - June. Analysis of the results of research allowed to evaluate the potential agroresource North Steppe and to establish the impact of the major factors in the formation of crop yields. Irrigation in this zone is the most important factor for improving productivity of crops, and its implementation in 70% of rotations may increase the productivity of not less than 1.8 times.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2738
Author(s):  
Prasanna Venkatesh Sampath ◽  
Gaddam Sai Jagadeesh ◽  
Chandra Sekhar Bahinipati

The COVID-19 pandemic is adversely impacting food and nutrition security and requires urgent attention from policymakers. Sustainable intensification of agriculture is one strategy that attempts to increase food production without adversely impacting the environment, by shifting from water-intensive crops to other climate-resistant and nutritious crops. This paper focuses on the Indian state of Andhra Pradesh by studying the impact of shifting 20% of the area under paddy and cotton cultivation to other crops like millets and pulses. Using FAO’s CROPWAT model, along with monsoon forecasts and detailed agricultural data, we simulate the crop water requirements across the study area. We simulate a business-as-usual base case and compare it to multiple crop diversification strategies using various parameters—food, calories, protein production, as well as groundwater and energy consumption. Results from this study indicate that reduced paddy cultivation decreases groundwater and energy consumption by around 9–10%, and a calorie deficit between 4 and 8%—making up this calorie deficit requires a 20–30% improvement in the yields of millets and pulses. We also propose policy interventions to incentivize the cultivation of nutritious and climate-resistant crops as a sustainable strategy towards strengthening food and nutrition security while lowering the environmental footprint of food production.


Author(s):  
Michael N. I. Lokuruka

This paper presents a review of the literature on food and nutrition security in Kenya’s arid counties. It also provides strategies that can be adopted to improve food and nutrition security in the counties. Due to their aridity, they are associated with low economic, health, literacy and food and nutrition security indicators. They bear the brunt of food and nutrition insecurity and a proportionately higher percentage of their population faces starvation, whenever droughts occur. Stunting and wasting in the region’s children averages 28 and 14%, respectively. The figures compare poorly with the national averages of 4% and 11%, respectively. As the indices are related to quantity, diversity and quality of food intake, there is need to reduce food and nutrition insecurity in these Counties. Past efforts to reduce food and nutrition insecurity have failed, due to lack of long-term commitment from the National-level of Government, the use of inefficient farming technologies and low level of mechanization. Poverty, low and unpredictable rainfall for rain-fed agriculture, inconsistent livestock marketing of poor quality livestock, high crop production costs, high food prices also contribute to food and nutrition insecurity of the region. To improve food and nutrition security, it is recommended that the National-level of Government cedes the implementation of food production programmes to County Governments, while it strengthens food production policies, diversification of livelihoods and supports resilience-building. Other recommendations include innovating solar and wind-power devices to run machinery for food production, processing and preservation. Improvements in water harvesting, storage and pumping with wind and solar-powered equipment can also be explored. These improvements should eventually reduce dependence on food importation, which raises food prices, and de-incentivizes local farmers. Diversification of livelihoods, good governance and the application of appropriate technologies in food production, value addition and cooperation of the two levels of Government, are likely to gradually improve access and availability of quality and affordable food. The potential result is an improving food and nutrition security situation in Kenya’s arid Counties.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


2020 ◽  
Vol 2 ◽  
Author(s):  
Nathalie Colbach ◽  
Sandrine Petit ◽  
Bruno Chauvel ◽  
Violaine Deytieux ◽  
Martin Lechenet ◽  
...  

The growing recognition of the environmental and health issues associated to pesticide use requires to investigate how to manage weeds with less or no herbicides in arable farming while maintaining crop productivity. The questions of weed harmfulness, herbicide efficacy, the effects of herbicide use on crop yields, and the effect of reducing herbicides on crop production have been addressed over the years but results and interpretations often appear contradictory. In this paper, we critically analyze studies that have focused on the herbicide use, weeds and crop yield nexus. We identified many inconsistencies in the published results and demonstrate that these often stem from differences in the methodologies used and in the choice of the conceptual model that links the three items. Our main findings are: (1) although our review confirms that herbicide reduction increases weed infestation if not compensated by other cultural techniques, there are many shortcomings in the different methods used to assess the impact of weeds on crop production; (2) Reducing herbicide use rarely results in increased crop yield loss due to weeds if farmers compensate low herbicide use by other efficient cultural practices; (3) There is a need for comprehensive studies describing the effect of cropping systems on crop production that explicitly include weeds and disentangle the impact of herbicides from the effect of other practices on weeds and on crop production. We propose a framework that presents all the links and feed-backs that must be considered when analyzing the herbicide-weed-crop yield nexus. We then provide a number of methodological recommendations for future studies. We conclude that, since weeds are causing yield loss, reduced herbicide use and maintained crop productivity necessarily requires a redesign of cropping systems. These new systems should include both agronomic and biodiversity-based levers acting in concert to deliver sustainable weed management.


2021 ◽  
pp. 003072702110049
Author(s):  
Mashudu Tshikovhi ◽  
Roscoe Bertrum van Wyk

This study examines the impact of increasing climate variability on food production in South Africa, focusing on maize and wheat yields. A two-way fixed effects panel regression model was used to assess the climate variability impacts, analysing secondary data for the period 2000 to 2019 for nine provinces in South Africa. The study found that increasing climate variability has a negative impact on maize and wheat production in South Africa. Specifically, the results indicated a negative correlation between mean annual temperature with both maize and wheat yields. A decrease in precipitation affected maize yields negatively, while the impact on wheat yields was positive, although insignificant. This analysis, therefore, depicted that crop yields generally increase with more annual precipitation and decrease with higher temperatures. The study recommends that funding initiatives to educate farmers on increasing climate variability and its effects on farming activities in South Africa should be prioritised.


Solid Earth ◽  
2016 ◽  
Vol 7 (1) ◽  
pp. 93-103 ◽  
Author(s):  
B. G. J. S. Sonneveld ◽  
M. A. Keyzer ◽  
D. Ndiaye

Abstract. Land degradation has been a persistent problem in Senegal for more than a century and by now has become a serious impediment to long-term development. In this paper, we quantify the impact of land degradation on crop yields using the results of a nationwide land degradation assessment. For this, the study needs to address two issues. First, the land degradation assessment comprises qualitative expert judgements that have to be converted into more objective, quantitative terms. We propose a land degradation index and assess its plausibility. Second, observational data on soils, land use, and rainfall do not provide sufficient information to isolate the impact of land degradation. We, therefore, design a pseudo-experiment that for sites with otherwise similar circumstances compares the yield of a site with and one without land degradation. This pairing exercise is conducted under a gradual refining of the classification of circumstances, until a more or less stable response to land degradation is obtained. In this way, we hope to have controlled sufficiently for confounding variables that will bias the estimation of the impact of land degradation on crop yields. A small number of shared characteristics reveal tendencies of "severe" land degradation levels being associated with declining yields as compared to similar sites with "low" degradation levels. However, as we zoom in at more detail some exceptions come to the fore, in particular in areas without fertilizer application. Yet, our overall conclusion is that yield reduction is associated with higher levels of land degradation, irrespective of whether fertilizer is being applied or not.


2021 ◽  
Author(s):  
Frank Adusei

Abstract The COVID-19 and partial lockdown has brought significant effects on the entire economy, especially on food security and job losses. This study was carried out in Asokwa Municipal with the objective of examining the impact of COVID-19 disease and its related lockdown on food and nutrition security and job losses. The study site form part of the cities in Ghana to experience the partial lockdown, hence it qualifies for the selection. Both primary and secondary data were used. By means of purposive sampling technique, fifty respondents were selected as sample size. The study employed a qualitative approach with a descriptive and narrative posture to the presentation, discussion and analysis of data. Open-ended questionnaire and a checklist were used for data collection through semi-structured interviews. The results revealed that, food and nutrition insecurity, job loss and income reductions are still very common, affecting participants livelihood. Disproportionally affected are households whose income comes from farming, transporters, informal labour, as well as marketers.It was concluded that food insecurity is not outside the impact of COVID-19 and its associated partial lockdown. Food and nutrition security are the global concern at present circumstances. The supply chain has been hit hardest by COVID-19, which causes food insecurity of most vulnerable segment of population which put them at risk. And also, most of the migrant, informal, seasonal farm workers were losing their jobs which may affect their demand for food. Therefore, the government should step-up the measures to control the pandemic without disturbing the food supply chain. The development and use of online marketing strategies where people can make orders of various produce and booked for purchases and or deliveries during a stated time range should be promoted.


2019 ◽  
Vol 78 (3) ◽  
pp. 380-387 ◽  
Author(s):  
J. I. Macdiarmid ◽  
S. Whybrow

Climate change is threatening future global food and nutrition security. Limiting the increase in global temperature to 1·5 °C set out in The Paris Agreement (2015) while achieving nutrient security means overhauling the current food system to create one that can deliver healthy and sustainable diets. To attain this, it is critical to understand the implications for nutrition of actions to mitigate climate change as well as the impacts of climate change on food production and the nutrient composition of foods. It is widely recognised that livestock production has a much greater environmental burden than crop production, and therefore advice is to reduce meat consumption. This has triggered concern in some sectors about a lack of protein in diets, which hence is driving efforts to find protein replacements. However, in most high- and middle-income countries, protein intakes far exceed dietary requirements and it would even if all meat were removed from diets. Reduction in micronutrients should be given more attention when reducing meat. Simply eating less meat does not guarantee healthier or more sustainable diets. Climate change will also affect the type, amount and nutrient quality of food that can be produced. Studies have shown that increased temperature and elevated CO2 levels can reduce the nutrient density of some staple crops, which is of particular concern in low-income countries. Nutrition from a climate change perspective means considering the potential consequences of any climate action on food and nutrition security. In this paper, we discuss these issues from an interdisciplinary perspective.


Sign in / Sign up

Export Citation Format

Share Document