scholarly journals Increasing Crop Water Productivity through Local Crops and Technologies: A Case from the Ethnic Chepang Community of Nepal

Author(s):  
Bed P. Khatiwada ◽  
Rajan Ghimire ◽  
Rabindra Adhikari ◽  
Surendra Osti

Water is the most important and scarce production resource, and with changing climate the importance of this resource increases significantly. Increasing efforts are being made in research and education to maximize the water use efficiently with the concept of ‘crop per drop’ to increase crop water productivity with a good blend of science and indigenous knowledge. Nepalese farmers are adapting the best to water scarcity through adoption of sustainable soil management and the use of crops with minimum water requirement, among other options. This paper attempts to deal with the neglected issues of using local crops and indigenous knowledge and technologies for increasing water productivity.DOI: http://dx.doi.org/10.3126/hn.v11i1.7204 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.50-53

2015 ◽  
Vol 62 (1) ◽  
pp. 53-68 ◽  
Author(s):  
Wolde Mekuria ◽  
Andrew Noble ◽  
Matthew McCartney ◽  
Chu Thai Hoanh ◽  
Somphasith Douangsavanh ◽  
...  

2021 ◽  
Vol 6 (1) ◽  
pp. 37-43
Author(s):  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Steven R. Evett ◽  
Yong Chen ◽  
Kevin R. Heflin ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 756
Author(s):  
AbdAllah M. El-Sanatawy ◽  
Ahmed S. M. El-Kholy ◽  
Mohamed M. A. Ali ◽  
Mohamed F. Awad ◽  
Elsayed Mansour

Water shortage is a major environmental stress that destructively impacts maize production, particularly in arid regions. Therefore, improving irrigation management and increasing productivity per unit of water applied are needed, especially under the rising temperature and precipitation fluctuations induced by climate change. Laboratory and field trials were carried out in the present study, which were aimed at assessing the possibility of promoting maize germination, growth, grain yield and crop water productivity (CWP) using seed priming under different irrigation regimes. Two seed priming treatments, i.e., hydro-priming and hardening versus unprimed seeds, were applied under four irrigation regimes, i.e., 120, 100, 80 and 60% of estimated crop evapotranspiration (ETc). The obtained results indicated that increasing irrigation water from 100% up to 120% ETc did not significantly increase grain yield or contributing traits, while it decreased CWP. Deficit irrigation of 80 and 60% ETc gradually decreased grain yield and all attributed traits. Seed priming significantly ameliorated seedlings’ vigor as indicated by earlier germination, higher germination percentage, longer roots and shoots, and heavier fresh and dry weight than unprimed seeds with the superiority of hardening treatment. Additionally, under field conditions, seed priming significantly increased grain yield, yield contributing traits and CWP compared with unprimed treatment. Interestingly, the results reflect the role of seed priming, particularly hardening, in mitigating negative impacts of drought stress and enhancing maize growth, grain yield and attributed traits as well as CWP under deficit irrigation conditions. This was demonstrated by a significant increase in grain yield and CWP under moderate drought and severe drought conditions compared with unprimed treatment. These results highlight that efficient irrigation management and seed priming can increase maize yield and water productivity in arid environments.


2019 ◽  
Vol 11 (6) ◽  
pp. 705 ◽  
Author(s):  
Poolad Karimi ◽  
Bhembe Bongani ◽  
Megan Blatchford ◽  
Charlotte de Fraiture

Remote sensing techniques have been shown, in several studies, to be an extremely effective tool for assessing the performance of irrigated areas at various scales and diverse climatic regions across the world. Open access, ready-made, global ET products were utilized in this first-ever-countrywide irrigation performance assessment study. The study aimed at identifying ‘bright spots’, the highest performing sugarcane growers, and ‘hot spots’, or low performing sugarcane growers. Four remote sensing-derived irrigation performance indicators were applied to over 302 sugarcane growers; equity, adequacy, reliability and crop water productivity. The growers were segmented according to: (i) land holding size or grower scale (ii) management regime, (iii) location of the irrigation schemes and (iv) irrigation method. Five growing seasons, from June 2005 to October 2009, were investigated. The results show while the equity of water distribution is high across all management regimes and locations, adequacy and reliability of water needs improvement in several locations. Given the fact that, in general, water supply was not constrained during the study period, the observed issues with adequacy and reliability of irrigation in some of the schemes were mostly due to poor scheme and farm level water management practices. Sugarcane crop water productivity showed the highest variation among all the indicators, with Estate managed schemes having the highest CWP at 1.57 kg/m3 and the individual growers recording the lowest CWP at 1.14 kg/m3, nearly 30% less. Similarly center pivot systems showed to have the highest CWP at 1.63 kg/m3, which was 30% higher than the CWP in furrow systems. This study showcases the applicability of publicly available global remote sensing products for assessing performance of the irrigated crops at the local level in several aspects.


2018 ◽  
Vol 10 (12) ◽  
pp. 4432 ◽  
Author(s):  
Katharina Helming ◽  
Katrin Daedlow ◽  
Bernd Hansjürgens ◽  
Thomas Koellner

The globally increasing demand for food, fiber, and bio-based products interferes with the ability of arable soils to perform their multiple functions and support sustainable development. Sustainable soil management under high production conditions means that soil functions contribute to ecosystem services and biodiversity, natural and economic resources are utilized efficiently, farming remains profitable, and production conditions adhere to ethical and health standards. Research in support of sustainable soil management requires an interdisciplinary approach to three interconnected challenges: (i) understanding the impacts of soil management on soil processes and soil functions; (ii) assessing the sustainability impacts of soil management, taking into account the heterogeneity of geophysical and socioeconomic conditions; and (iii) having a systemic understanding of the driving forces and constraints of farmers’ decision-making on soil management and how governance instruments may, interacting with other driving forces, steer sustainable soil management. The intention of this special issue is to take stock of an emerging interdisciplinary research field addressing the three challenges of sustainable soil management in various geographic settings. In this editorial, we summarize the contributions to the special issue and place them in the context of the state of the art. We conclude with an outline of future research needs.


2015 ◽  
Vol 522 ◽  
pp. 428-438 ◽  
Author(s):  
Xiaolin Yang ◽  
Yuanquan Chen ◽  
Steven Pacenka ◽  
Wangsheng Gao ◽  
Li Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document