scholarly journals Experimental Analysis on the Properties of Concrete Brick With Partial Replacement of Sand by Saw Dust and Partial Replacement of Coarse Aggregate by Expanded Polystyrene

Author(s):  
Anjana Ghimire ◽  
Sanjeev Maharjan

An experimental study had been conducted to study the effects of saw dust and EPS as partial replacement of sand and coarse aggregate in various percentages such as 0%, 10%, 20% and 30% in concrete brick samples of M20 and M15 Grade. Compressive strength, Bulk density and Water absorption of prepared saw dust and EPS M20 and M15 concrete brick were determined. The properties of materials were first determined before the conduction of experimental works. The normal consistency, initial and final setting time and compressive strength of cement used for the experiment were found as 31%,115 minutes, 265 minutes and 39.5 N/mm2 respectively. Sieve analysis to determine the particle size distribution of sand, coarse aggregates, saw dust and EPS was performed. From the sieve analysis, the nominal maximum size of sand, coarse aggregate, saw dust and EPS used for preparing concrete brick sample were 2.36 mm, 12.5 mm, 2.36 mm and 4.75 mm respectively. Impact value of coarse aggregate obtained was 11.20 %.The experimental results showed that water absorption of prepared M15 and M20 concrete brick samples increased with increase in percentage replacement of sand by saw dust and EPS by coarse aggregate. Compressive strength and Bulk density of prepared M15 and M20 concrete brick sample decreased with increase in percentage content of saw dust and EPS. The results showed that the partial replacement of sand by saw dust and coarse aggregate by EPS in concrete brick sample had sufficient strength as compared to common bricks.

2018 ◽  
Vol 203 ◽  
pp. 06001
Author(s):  
Muhammad Bilal Waris ◽  
Hussain Najwani ◽  
Khalifa Al-Jabri ◽  
Abdullah Al-Saidy

To manage tyre waste and conserve natural aggregate resource, this research investigates the use of waste tyre rubber as partial replacement of fine aggregates in non-structural concrete. The research used Taguchi method to study the influence of mix proportion, water-to-cement ratio and tyre rubber replacement percentage on concrete. Nine mixes were prepared with mix proportion of 1:2:4, 1:5:4 and 1:2.5:3; water-to-cement ratio of 0.25, 0.35 and 0.40 and rubber to fine aggregate replacement of 20%, 30% and 40%. Compressive strength and water absorption tests were carried out on 100 mm cubes. Compressive strength was directly proportional to the amount of coarse aggregate in the mix. Water-to-cement ratio increased the strength within the range used in the study. Strength was found to be more sensitive to the overall rubber content than the replacement ratio. Seven out of the nine mixes satisfied the minimum strength requirement for concrete blocks set by ASTM. Water absorption and density for all mixes satisfied the limits applicable for concrete blocks. The study indicates that mix proportions with fine to coarse aggregate ratio of less than 1.0 and w/c ratio around 0.40 can be used with tyre rubber replacements of up to 30 % to satisfy requirements for non-structural concrete.


2020 ◽  
Vol 38 (11A) ◽  
pp. 1706-1716
Author(s):  
Wasan I. Khalil ◽  
Qias J. Frayyeh ◽  
Mahmood F. Ahmed

The purpose of this work is to investigate the possibility to recycled and reused of waste clay brick and waste plastic as constituents in the production of green Geopolymer concrete paving bricks. Powder of clay brick waste (WBP) was used as a partial replacement of Metakaolin (MK) in Geopolymer binder. Moreover, recycled clay brick waste aggregate (BA) and plastic waste aggregate (PL) were incorporated as coarse aggregate in mixtures of Metakaolin based Geopolymer concrete (MK-GPC) pavement bricks. Six types of mixtures were prepared and cast as pavement bricks with dimensions of 150×150×100 mm. All samples have been tested for compressive strength, water absorption and abrasion resistance at age of 28 days; and compared the results with the requirements of Iraqi specification No.1606-2006. The MK-GPC pavement bricks present a compressive strength of 31-47MPa, water absorption of 3.66% to5.32% and abrasion resistance with groove length between 21.78mm to 18.91 mm. These types of pavement bricks are classified as a medium to light capacity for weight loading, and it is possible to be used in wide range of paving applications, especially in aggressive wearing environment.


2017 ◽  
Vol 3 (8) ◽  
pp. 594-609 ◽  
Author(s):  
Bengin Herki

The environmental impacts of the construction industry can be minimised through using waste and recycled materials to replace natural resources. Results are presented of an experimental study concerning capillary transport of water in concrete incorporating densified expanded polystyrene (EPS) as a novel aggregate. A new environmentally friendly technique of densifying was used to improve the resistance to segregation of EPS beads in concrete. Twelve concrete mixes with three different water/cement ratios of 0.6, 0.8 and 1.0 with varying novel aggregate content ratios of 0, 30, 60 and 100% as partial replacement for natural aggregate by equivalent volume were prepared and tested. Total absorption, absorption by capillary action, and compressive strength was determined for the various concrete mixes at different curing times. The results indicated that there is an increase in total water absorption (WA) and capillary water absorption (CWA) and a decrease in compressive strength with increasing amounts of the novel aggregate in concrete. However, there is no significant difference between the CWA of control and concretes containing lower replacement level.


2021 ◽  
pp. 1-11
Author(s):  
Bernard Missota Priso Dickson ◽  
Claudine Mawe Noussi ◽  
Louise Ndongo Ebongue ◽  
Joseph Dika Manga

This study focuses on the evaluation of the physical and mechanical properties of a porous material based on a mixture of powder (Volcanic ash /Aluminum Beverage Cans) and a solution of phosphoric acid. Volcanic ash (VA) use was collected in one of the quarries of Mandjo (Cameroon coastal region), crushed, then characterized by XRF, DRX, FTIR and named MaJ. The various polymers obtained are called MaJ0, MaJ2.5, MaJ5, MaJ7.5 and MaJ10 according to the mass content of the additions of the powder from the aluminum beverage cans (ABCs). The physical and mechanical properties of the synthetic products were evaluated by determining the apparent porosity, bulk density, water absorption and compressive strength. The results of this study show that the partial replacement of the powder of VA by that of ABC leads to a reduction in the compressive strength (5.9 - 0.8 MPa) and bulk density (2.56 – 1.32 g/cm3) of the polymers obtained. On the other hand, apparent porosity, water absorption and pore formation within the polymers increases with addition of the powder from the beverage cans. All of these results allow us to agree that the ABCs powder can be used as a blowing agent during the synthesis of phosphate inorganic polymers.


2016 ◽  
Vol 865 ◽  
pp. 201-205 ◽  
Author(s):  
Michaela Fiedlerová ◽  
Rostislav Drochytka ◽  
Pavel Dohnálek

This paper deals with the evaluation of a partial replacement of cement by Czech fly ash in high strength floor screed in dosage of 10, 20, 30 and 40% and the assessment of the physical-mechanical properties such as compressive strength, water absorption and bulk density. Used fly ashes are from power plants Počerady, Opatovice and Tušimice. The experimental study showed that the use of Czech fly ash improves the compressive strength. The bulk density decreases and therefore water absorption increases. Reference samples become clearly the lowest compressive strength at age of 28 days (fc28). A significant increase in compressive strength (fc28) was observed in case of mix design with addition of 10% and 20% of fly ash Tušimice (10%ETU, 20%ETU) and 20% and 30% of fly ash Počerady (20%EPC, 30%EPC). The addition of 20% of fly ash Počerady (20%EPC) has noticeable influence on short-term compressive strength (measured at the age of 24 hours).


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gashaw Abebaw ◽  
Bahiru Bewket ◽  
Shumet Getahun

Ethiopia’s construction industry is aggressively expanding than ever before. Cement is the most essential and expensive material in this regard. Cement takes 10%–15% by volume of concrete. Nowadays, the construction industry is challenged by the scarcity of cement and price escalation of the cement market. However, scholars try to replace cement with pozzolanic material. Besides this, they investigated that bamboo leaf ash possesses pozzolanic properties. Ethiopia has about 850,000 hectares of lowland bamboo, so it is good to utilize bamboo leaf ash as a replacement material for cement. In this study, the capability of lowland Ethiopian bamboo leaf ash as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of OPC by BLA with 0.49 percent water-to-cement ratio was investigated. This study examines the chemical properties of BLA, physical properties of cement paste, workability, compressive strength, water absorption, density, and sulfate attack of concrete. The chemical composition of bamboo leaf ash was examined, the summation of SiO2, AlO3, and FeO3 is 76.35%, and the ash was classified class N pozzolan. The normal consistency percentage of water increases as the BLA replacement amount increases, and both initial and final setting time ranges increase as the BLA replacement amount increases. The compressive strength of concrete for 5% and 10% BLA achieves the target mean strength (33.5 MPa) on the 28th day, and on the 56th day, 5% and 10% replacements increase the concrete strength by 1.84% and 0.12%, respectively. The water absorption and sulfate attack have significant improvement of the BLA-blended concrete on 5% and 10% BLA content. According to the findings, bamboo leaf ash potentially substitutes cement up to 10%. The outcome of the study will balance the cement price escalation and increase housing affordability without compromise in quality.


Author(s):  
Bolanle Deborah Ikotun ◽  
Akeem Ayinde Raheem

AbstractThis paper presents the findings of an investigation into the influence of green-synthesized nano-TiO2 on the characteristics of wood ash (WA) cement mortar. Mortar specimens were prepared by partial replacement of cement with WA (10% by weight) and addition of 1, 2 and 3% nano-TiO2 by weight of binder; using constant water-to-binder ratio (w/b) for all mixtures. The properties evaluated are setting time of the binder and flexural and compressive strength with water absorption of the mortar. The results indicated that addition of 1 and 2% nano-TiO2 reduced setting times of WA cement paste. Also, the flexural and compressive strength of WA cement mortar were higher with the incorporation of up to 2% nano-TiO2. The water absorption of WA cement mortar was reduced when nano-TiO2 was added with 2% incorporation having the best result. The incorporation of NT in WA cement mortar improved its workability and strength characteristics.


2016 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Neelu Das ◽  
Shashikant Singh

 In this paper, the potential use of water hyacinth stem ash (WHA) in the partial replacement of cement is studied. WHA was used as a replacement for ordinary Portland cement at 10, 15, 20 and 25 wt. %. To evaluate the pozzolanic activity of WHA, the properties investigated were chemical composition, particle size, soundness, setting time, specific gravity, presence of crystalline matter, compressive strength, water absorption and sorption. Mortar cubes were tested for compressive strength up to the age of 56 days, whereas water absorption and sorption tests are carried out at the age of 28 days. Test results reveal that mortar cubes with 10% WHA substitution for Portland cement produced comparative compressive strength values to control mortar. It was also observed that the use of WHA in Portland cement has reduced water absorption characteristics.


2013 ◽  
Vol 787 ◽  
pp. 131-137 ◽  
Author(s):  
B.A. Herki ◽  
Jamal M. Khatib

This paper covers the results of an experimental investigation on mechanical and durability properties of concrete containing waste polystyrene based lightweight aggregate called Stabilised Polystyrene (SPS) as a partial replacement of natural aggregates. The properties investigated in this paper were water absorption by capillary action and total absorption, compressive strength and ultrasonic pulse velocity (UPV). The composite aggregate was formed with 80% waste polystyrene which was shredded to different sizes, 10% of a natural additive to improve the resistance to segregation and 10% Portland cement. The natural fine aggregate were replaced with 0%, 30%, 60% and 100% (by volume) of SPS. There was an increasing in water absorption and a decreasing in compressive strength and UPV with the increase in SPS aggregate content in concrete.


2021 ◽  
Vol 1 (1) ◽  
pp. 15-19
Author(s):  
Vidya Sagar Khanduri ◽  
Shivek Sharma

The objective of this research is to enhance the properties of concrete by using Fly Ash as a partial substitution of concrete. Tests carried out on cement are Initial and Final setting time and on aggregates, specific gravity and sieve analysis. The mean target strength with given compressive strength at 28 day and quality control level is calculated. Concrete blend proportions for the first tryout mix is calculated and casting of cube of 15mm size with curing for 28 days, and then test for strength using UTM/CTM machines. C-S-H gel as well as Calcium hydroxide as bi product when reacts with water. C-S-H gel has an ability to keep the ingredients together by making a proper bond whereas lime which is freely available can react with atmospheric moisture and cause efflorescence. In such cases if we use fly ash, it reacts with free lime and produces C-SH gel again and water as bi product. We have used Fly ash as a partial replacement of cement with variation of fly ash in percentage. In this study fly ash add in increment of 5%, 10%, 15%, 20%, 25%, 30% and 35% replacement of cement which has shown satisfactory results in the strength of the concrete. Fly Ash improved the workability of the concrete, decreases the bleeding, surface finish and increases the cohesiveness. Compressive strength is comparatively increased. The initial strength of concrete with fly ash has lower strength but acquires higher strength after 56 days; which shows that more the nos. of curing days more will be the strength. Thus, it can be used in areas of construction such as dams, pavements etc.


Sign in / Sign up

Export Citation Format

Share Document