scholarly journals Absorption Characteristics of Lightweight Concrete Containing Densified Polystyrene

2017 ◽  
Vol 3 (8) ◽  
pp. 594-609 ◽  
Author(s):  
Bengin Herki

The environmental impacts of the construction industry can be minimised through using waste and recycled materials to replace natural resources. Results are presented of an experimental study concerning capillary transport of water in concrete incorporating densified expanded polystyrene (EPS) as a novel aggregate. A new environmentally friendly technique of densifying was used to improve the resistance to segregation of EPS beads in concrete. Twelve concrete mixes with three different water/cement ratios of 0.6, 0.8 and 1.0 with varying novel aggregate content ratios of 0, 30, 60 and 100% as partial replacement for natural aggregate by equivalent volume were prepared and tested. Total absorption, absorption by capillary action, and compressive strength was determined for the various concrete mixes at different curing times. The results indicated that there is an increase in total water absorption (WA) and capillary water absorption (CWA) and a decrease in compressive strength with increasing amounts of the novel aggregate in concrete. However, there is no significant difference between the CWA of control and concretes containing lower replacement level.

2013 ◽  
Vol 787 ◽  
pp. 131-137 ◽  
Author(s):  
B.A. Herki ◽  
Jamal M. Khatib

This paper covers the results of an experimental investigation on mechanical and durability properties of concrete containing waste polystyrene based lightweight aggregate called Stabilised Polystyrene (SPS) as a partial replacement of natural aggregates. The properties investigated in this paper were water absorption by capillary action and total absorption, compressive strength and ultrasonic pulse velocity (UPV). The composite aggregate was formed with 80% waste polystyrene which was shredded to different sizes, 10% of a natural additive to improve the resistance to segregation and 10% Portland cement. The natural fine aggregate were replaced with 0%, 30%, 60% and 100% (by volume) of SPS. There was an increasing in water absorption and a decreasing in compressive strength and UPV with the increase in SPS aggregate content in concrete.


Author(s):  
Anjana Ghimire ◽  
Sanjeev Maharjan

An experimental study had been conducted to study the effects of saw dust and EPS as partial replacement of sand and coarse aggregate in various percentages such as 0%, 10%, 20% and 30% in concrete brick samples of M20 and M15 Grade. Compressive strength, Bulk density and Water absorption of prepared saw dust and EPS M20 and M15 concrete brick were determined. The properties of materials were first determined before the conduction of experimental works. The normal consistency, initial and final setting time and compressive strength of cement used for the experiment were found as 31%,115 minutes, 265 minutes and 39.5 N/mm2 respectively. Sieve analysis to determine the particle size distribution of sand, coarse aggregates, saw dust and EPS was performed. From the sieve analysis, the nominal maximum size of sand, coarse aggregate, saw dust and EPS used for preparing concrete brick sample were 2.36 mm, 12.5 mm, 2.36 mm and 4.75 mm respectively. Impact value of coarse aggregate obtained was 11.20 %.The experimental results showed that water absorption of prepared M15 and M20 concrete brick samples increased with increase in percentage replacement of sand by saw dust and EPS by coarse aggregate. Compressive strength and Bulk density of prepared M15 and M20 concrete brick sample decreased with increase in percentage content of saw dust and EPS. The results showed that the partial replacement of sand by saw dust and coarse aggregate by EPS in concrete brick sample had sufficient strength as compared to common bricks.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gashaw Abebaw ◽  
Bahiru Bewket ◽  
Shumet Getahun

Ethiopia’s construction industry is aggressively expanding than ever before. Cement is the most essential and expensive material in this regard. Cement takes 10%–15% by volume of concrete. Nowadays, the construction industry is challenged by the scarcity of cement and price escalation of the cement market. However, scholars try to replace cement with pozzolanic material. Besides this, they investigated that bamboo leaf ash possesses pozzolanic properties. Ethiopia has about 850,000 hectares of lowland bamboo, so it is good to utilize bamboo leaf ash as a replacement material for cement. In this study, the capability of lowland Ethiopian bamboo leaf ash as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of OPC by BLA with 0.49 percent water-to-cement ratio was investigated. This study examines the chemical properties of BLA, physical properties of cement paste, workability, compressive strength, water absorption, density, and sulfate attack of concrete. The chemical composition of bamboo leaf ash was examined, the summation of SiO2, AlO3, and FeO3 is 76.35%, and the ash was classified class N pozzolan. The normal consistency percentage of water increases as the BLA replacement amount increases, and both initial and final setting time ranges increase as the BLA replacement amount increases. The compressive strength of concrete for 5% and 10% BLA achieves the target mean strength (33.5 MPa) on the 28th day, and on the 56th day, 5% and 10% replacements increase the concrete strength by 1.84% and 0.12%, respectively. The water absorption and sulfate attack have significant improvement of the BLA-blended concrete on 5% and 10% BLA content. According to the findings, bamboo leaf ash potentially substitutes cement up to 10%. The outcome of the study will balance the cement price escalation and increase housing affordability without compromise in quality.


2019 ◽  
Vol 1 (6) ◽  
pp. 192-197
Author(s):  
Kanchana T ◽  
Jamunabharathi M ◽  
Thaththathirian S

This study involves the experimental investigation of effect of fly ash and dry sludge on the properties of fly ash bricks. On seeing the present day demand for bricks, an attempt is made to study the behavior of bricks manufactured using, different waste materials like dry sludge and fly ash. The main aim of this work was to compare the compressive strength of the bricks. The disposal of sludge has always been by dumping in the soil, this has hazardous effect on the air and environment at large. They can be recycled for use in construction industry without producing any harm to human and environment. Research has shown that they can be used in manufacturing of cement. Sludge and fly ash mixed with Quarry dust and cement in various percentage keeping the Quarry dust and cement with constant percentage of 30% and 20% respectively, while fly ash is replaced with sludge from 0% to 100% consequently with 20% replacement. The result shows that fly ash and sludge together can be used in the alternative bricks, the compressive strength and water absorption is good and weight of the brick is reduced up to10% from the nominal bricks.


Cerâmica ◽  
2017 ◽  
Vol 63 (368) ◽  
pp. 530-535
Author(s):  
Z. L. M. Sampaio ◽  
A. E. Martinelli ◽  
T. S. Gomes

Abstract The recent increase in the construction industry has transformed concrete into an ideal choice to recycle a number of residues formerly discarded into the environment. Among various products, porcelain tile polishing, limestone and tire rubber residues are potential candidates to replace the fine aggregate of conventional mixtures. The aim of this study was to investigate the effect of the addition of varying contents of these residues in lightweight concrete where expanded clay replaced gravel. To that end, slump, compressive strength, density, void ratio, porosity and absorption tests were carried out. The densities of all concrete formulations studied were 10% lower to that of lightweight concrete (<1.850 kg/m³). Nevertheless, mixes containing 10 to 15% of combined residues reduced absorption, void ratio and porosity, at least 17% lower compared to conventional concrete. The strength of such formulations reached 27 MPa at 28 days with consistency of 9 to 12 cm, indicating adequate consistency and increased strength. In addition, the combination of low porosity, absorption and voids suggested improved durability.


Author(s):  
Adeniran Jolaade ADEALA ◽  
Olugbenga Babajide SOYEM

Expanded polystyrene (EPS) wastes are generated from industries and post-consumer products. They are non-biodegradable but are usually disposed by burning or landfilling leading to environmental pollution. The possibility of using EPS as partial replacement for fine aggregates in concrete has generated research interests in recent times. However, since the physical and mechanical properties of EPS are not like those of conventional fine aggregates, this study is focussed on the use of EPS as an additive in concrete while keeping other composition (sand and granite) constant. Expanded polystyrene was milled, the bulk density of EPS was 10.57kg/m3 and particle size distributions were determined. Engineering properties of expanded polystyrene concrete were determined in accordance with BS 8110-2:1985. The result showed that the amount of expanded polystyrene incorporated in concrete influence the properties of hardened and fresh concrete. The compressive strengths of 17.07MPa with 5 % expanded polystyrene concrete at 28 days for example can be used as a lightweight concrete for partitioning in offices. Incorporating expanded polystyrene granules in a concrete matrix can produce lightweight polystyrene aggregate concrete of various densities, compressive strengths, flexural strengths and tensile strengths. In conclusion, this reduces environmental pollution, reduction in valuable landfill space and also for sustainability in construction companies


Author(s):  
Shahid Bashir

Abstract: Cement production is one of the sources that emit carbon dioxide, in addition to deforestation and combustion of fossil fuels also leads to ill effects on environment. The global cement industry accounts for 7% of earth’s greenhouse gas emission. To enhance the environmental effects associated with cement manufacturing and to constantly deplore natural resources, we need to develop other binders to make the concrete industry sustainable. This work offers the option to use waste paper sludge ash as a partial replacement of cement for new concrete. In this study cement in partially replaced as 5%, 10%, 15% and 20% by waste paper sludge ash in concrete for M25 mix and tested for compressive strength, tensile strength, water absorption and dry density up to the age of 28days and compared it with conventional concrete, based on the results obtained, it is found that waste paper ash may be used as a cement replacement up to 5% by weight and the particle size is less the 90µm to prevent reduction in workability. Keywords: slump test, Compressive strength, split tensile strength, water absorption test, Waste Paper Sludge Ash Concrete, Workability.


Author(s):  
Adriane Pczieczek ◽  
Adilson Schackow ◽  
Carmeane Effting ◽  
Itamar Ribeiro Gomes ◽  
Talita Flores Dias

This study aims to evaluate the application of discarded tire rubber waste and Expanded Polystyrene (EPS) in mortar. For mortars fine aggregate was replaced by 10%, 20% and 30% of rubber and, 7.5% and 15% of EPS. We have verified the consistency, density, amount of air and water retentitivity in fresh state. The compressive strength, water absorption, voids ratio and specific gravity have been also tested in hardened state. The application of rubber powder contributed to the increase in entrained air content and in reducing specific gravity, as well as reducing compressive strength at 28 days. The addition of EPS also contributed to the increase of workability, water absorption and voids ratio, and decreased density and compressive strength when compared to the reference mortar. The use of rubber waste and EPS in mortar made the material more lightweight and workable. The mortars mixtures containing 10% rubber and 7.5% EPS showed better results.


Author(s):  
Grigory Yakovlev ◽  
Jadvyga Keriene ◽  
Anastasiia Gordina ◽  
Irina Polyanskikh ◽  
Milan Bekmansurov

The paper presents possible ways of utilizing technogenic waste – fluorine anhydrite – by its use in production of dry mortars and piece goods from lightweight concrete with expanded polystyrene, as a organic filler, for low-rise construc-tion. The developed dry mortars are based on fluorine anhydrite binder and complex modifier comprising curing activator (sulfate or alkaline) and finely dispersed additive. The fluorine anhydrite-based compositions have improved physical and performance characteristics, including the improved strength and average density and reduced water absorption compared to the control composition. The developed lightweight anhydrite polystyrene concrete has the density grade of 700 kg/m3 and good vapor and gas permeability. The concrete is stabile while using and fire safe, because each granule of expanded poly-styrene is coated with anhydrite matrix, and has the strength sufficient for structural and heat insulating slabs and blocks. All mentioned compositions are eco-friendly and are in great demand for low-rise construction. Therefore the manufacturing of these compositions will consume a large amount of technogenic waste and will reduce the environmental load on the region where the waste is located.


2017 ◽  
Vol 751 ◽  
pp. 521-526 ◽  
Author(s):  
Jiraphorn Mahawan ◽  
Somchai Maneewan ◽  
Tanapon Patanin ◽  
Atthakorn Thongtha

This research concentrates to the effect of changing sand proportion on the physical, mechanical and thermal properties of building wall materials (Cellular lightweight concrete). The density, water absorption and compressive strength of the 7.0 cm x 7.0 cm x 7.0 cm concrete sample were studied. It was found that there are an increase of density and a reduction of water absorption with an increase of sand content. The higher compressive strength can be confirmed by higher density and lower water absorption. The physical and mechanical properties of lightweight concrete conditions conformed to the Thai Industrial Standard 2601-2013. The phases of CaCO3 and calcium silicate hydrate (C-S-H) in the material indicate an important factor in thermal insulating performance.


Sign in / Sign up

Export Citation Format

Share Document