scholarly journals Experimental Investigation on Effect of Partial Replacement of Cement with Bamboo Leaf Ash on Concrete Property

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gashaw Abebaw ◽  
Bahiru Bewket ◽  
Shumet Getahun

Ethiopia’s construction industry is aggressively expanding than ever before. Cement is the most essential and expensive material in this regard. Cement takes 10%–15% by volume of concrete. Nowadays, the construction industry is challenged by the scarcity of cement and price escalation of the cement market. However, scholars try to replace cement with pozzolanic material. Besides this, they investigated that bamboo leaf ash possesses pozzolanic properties. Ethiopia has about 850,000 hectares of lowland bamboo, so it is good to utilize bamboo leaf ash as a replacement material for cement. In this study, the capability of lowland Ethiopian bamboo leaf ash as a partial substitute for cement in C-25 concrete production with 0%, 5%, 10%, 15%, and 20% replacement of OPC by BLA with 0.49 percent water-to-cement ratio was investigated. This study examines the chemical properties of BLA, physical properties of cement paste, workability, compressive strength, water absorption, density, and sulfate attack of concrete. The chemical composition of bamboo leaf ash was examined, the summation of SiO2, AlO3, and FeO3 is 76.35%, and the ash was classified class N pozzolan. The normal consistency percentage of water increases as the BLA replacement amount increases, and both initial and final setting time ranges increase as the BLA replacement amount increases. The compressive strength of concrete for 5% and 10% BLA achieves the target mean strength (33.5 MPa) on the 28th day, and on the 56th day, 5% and 10% replacements increase the concrete strength by 1.84% and 0.12%, respectively. The water absorption and sulfate attack have significant improvement of the BLA-blended concrete on 5% and 10% BLA content. According to the findings, bamboo leaf ash potentially substitutes cement up to 10%. The outcome of the study will balance the cement price escalation and increase housing affordability without compromise in quality.

Author(s):  
C.H. Aginam ◽  
C.M. Nwakaire ◽  
P.D. Onodagu ◽  
N.M. Ezema

The use of crushed quarry dust as a partial replacement of river sand in concrete production was investigated in this study. This is expedient as quarry dust can be available at some locations with insufficient river sand for construction purposes. The use of quarry dust is also in concrete is also a measure necessary for improvement of concrete strength. River sand was replaced with quarry dust for different mix designs of concrete for 0% to 25% replacement levels with 5% intervals. The physical properties of river sand and quarry dust were tested and reported and the workability as well as compressive strengths of the concrete mixtures were also tested. It was observed that the slump values increased with increase in percentage replacement of sand with quarry dust. The compressive strength of cubes at 28 day curing for control mixture of 1:3:6 at 0% partial replacement of river sand with quarry dust was 12.6N/mm2 but compressive strengths of 21.5 N/mm2 and 26.0 N/mm2 were gotten for 1:2:4 concrete and 1:1.5:3 concrete respectively. As the quarry dust content increased to 25%, the 28day compressive strength increased to 13.58 N/mm2 and 21.57 N/mm2 for the 1:3:6 and 1:2:4 mixes respectively. Compressive strength values decreased to a value of 25.72N/mm2 for the 1:1.5:3 concrete mix. The maximum compressive strength values were reached at 20% quarry dust content at the age of 28 days for the three concrete grades investigated. The increase in compressive strength with inclusion of quarry dust was attributed to the higher specific gravity of quarry dust above river sand. The compressive strength of quarry dust concrete continued to increase with age for all the percentages of quarry dust contents. Quarry dust was recommended as a suitable partial replacement for river bed sand in concrete production.


Author(s):  
Ovie Isaac AKPOKODJE ◽  
Goodnews Goodman AGBI ◽  
Hilary UGURU

This paper evaluated the influence of cassava effluent on the compressive strength of concrete for farm structures. Three sets of concrete cubes were produced with a concrete mix ratio of 1:2:4 (C 15) and a water to cement ratio (w c-1) of 0.5. The 1st set was produced with 100% fresh water (tap water). The 2nd set was produced with 75% partial replacement of the fresh water with fresh cassava effluent, while the 3rd set was produced with 75% partial replacement of the fresh water with old cassava effluent. The density, water absorption rate and compressive strength of the concrete cubes was tested in accordance with ASTM International standards, at the end of 7, 14, 21, 28 and 56 curing days. The results revealed that, the cassava effluent slightly increased the cubes density; but reduced their water absorption rate. The study further showed that, concrete produced with fresh cassava effluent, developed the highest compressive strength (29.57 MPa) at the end of the 56th curing day. In contrast, concrete produced with old cassava effluent developed the lowest compressive strength (24.43 MPa) at day 56, which was lower than the compressive strength of 27.18 MPa developed by the concrete produced with fresh water (also at day 56). In addition, the cassava effluent retarded the initial rate of strength development, as such, increasing its prospect as an organic concrete admixture. This study will be helpful in mitigating the harmful effects of cassava effluent in the environment, since it can be utilized in concrete production.


2017 ◽  
Vol 3 (8) ◽  
pp. 594-609 ◽  
Author(s):  
Bengin Herki

The environmental impacts of the construction industry can be minimised through using waste and recycled materials to replace natural resources. Results are presented of an experimental study concerning capillary transport of water in concrete incorporating densified expanded polystyrene (EPS) as a novel aggregate. A new environmentally friendly technique of densifying was used to improve the resistance to segregation of EPS beads in concrete. Twelve concrete mixes with three different water/cement ratios of 0.6, 0.8 and 1.0 with varying novel aggregate content ratios of 0, 30, 60 and 100% as partial replacement for natural aggregate by equivalent volume were prepared and tested. Total absorption, absorption by capillary action, and compressive strength was determined for the various concrete mixes at different curing times. The results indicated that there is an increase in total water absorption (WA) and capillary water absorption (CWA) and a decrease in compressive strength with increasing amounts of the novel aggregate in concrete. However, there is no significant difference between the CWA of control and concretes containing lower replacement level.


Author(s):  
Anjana Ghimire ◽  
Sanjeev Maharjan

An experimental study had been conducted to study the effects of saw dust and EPS as partial replacement of sand and coarse aggregate in various percentages such as 0%, 10%, 20% and 30% in concrete brick samples of M20 and M15 Grade. Compressive strength, Bulk density and Water absorption of prepared saw dust and EPS M20 and M15 concrete brick were determined. The properties of materials were first determined before the conduction of experimental works. The normal consistency, initial and final setting time and compressive strength of cement used for the experiment were found as 31%,115 minutes, 265 minutes and 39.5 N/mm2 respectively. Sieve analysis to determine the particle size distribution of sand, coarse aggregates, saw dust and EPS was performed. From the sieve analysis, the nominal maximum size of sand, coarse aggregate, saw dust and EPS used for preparing concrete brick sample were 2.36 mm, 12.5 mm, 2.36 mm and 4.75 mm respectively. Impact value of coarse aggregate obtained was 11.20 %.The experimental results showed that water absorption of prepared M15 and M20 concrete brick samples increased with increase in percentage replacement of sand by saw dust and EPS by coarse aggregate. Compressive strength and Bulk density of prepared M15 and M20 concrete brick sample decreased with increase in percentage content of saw dust and EPS. The results showed that the partial replacement of sand by saw dust and coarse aggregate by EPS in concrete brick sample had sufficient strength as compared to common bricks.


2019 ◽  
Vol 1 (6) ◽  
pp. 192-197
Author(s):  
Kanchana T ◽  
Jamunabharathi M ◽  
Thaththathirian S

This study involves the experimental investigation of effect of fly ash and dry sludge on the properties of fly ash bricks. On seeing the present day demand for bricks, an attempt is made to study the behavior of bricks manufactured using, different waste materials like dry sludge and fly ash. The main aim of this work was to compare the compressive strength of the bricks. The disposal of sludge has always been by dumping in the soil, this has hazardous effect on the air and environment at large. They can be recycled for use in construction industry without producing any harm to human and environment. Research has shown that they can be used in manufacturing of cement. Sludge and fly ash mixed with Quarry dust and cement in various percentage keeping the Quarry dust and cement with constant percentage of 30% and 20% respectively, while fly ash is replaced with sludge from 0% to 100% consequently with 20% replacement. The result shows that fly ash and sludge together can be used in the alternative bricks, the compressive strength and water absorption is good and weight of the brick is reduced up to10% from the nominal bricks.


Author(s):  
Bolanle Deborah Ikotun ◽  
Akeem Ayinde Raheem

AbstractThis paper presents the findings of an investigation into the influence of green-synthesized nano-TiO2 on the characteristics of wood ash (WA) cement mortar. Mortar specimens were prepared by partial replacement of cement with WA (10% by weight) and addition of 1, 2 and 3% nano-TiO2 by weight of binder; using constant water-to-binder ratio (w/b) for all mixtures. The properties evaluated are setting time of the binder and flexural and compressive strength with water absorption of the mortar. The results indicated that addition of 1 and 2% nano-TiO2 reduced setting times of WA cement paste. Also, the flexural and compressive strength of WA cement mortar were higher with the incorporation of up to 2% nano-TiO2. The water absorption of WA cement mortar was reduced when nano-TiO2 was added with 2% incorporation having the best result. The incorporation of NT in WA cement mortar improved its workability and strength characteristics.


2016 ◽  
Vol 7 (1) ◽  
pp. 1-8 ◽  
Author(s):  
Neelu Das ◽  
Shashikant Singh

 In this paper, the potential use of water hyacinth stem ash (WHA) in the partial replacement of cement is studied. WHA was used as a replacement for ordinary Portland cement at 10, 15, 20 and 25 wt. %. To evaluate the pozzolanic activity of WHA, the properties investigated were chemical composition, particle size, soundness, setting time, specific gravity, presence of crystalline matter, compressive strength, water absorption and sorption. Mortar cubes were tested for compressive strength up to the age of 56 days, whereas water absorption and sorption tests are carried out at the age of 28 days. Test results reveal that mortar cubes with 10% WHA substitution for Portland cement produced comparative compressive strength values to control mortar. It was also observed that the use of WHA in Portland cement has reduced water absorption characteristics.


Author(s):  
Agboola Shamsudeen Abdulazeez ◽  
Amina Omolola Suleiman ◽  
Simdima Gabriel Gideon ◽  
Solomon Wutong Poki

- Presently researches all over the world is concentrating on alternative materials as partial cement replacement in concrete production. The use of pozzolanic material in concrete is becoming increasingly important because of the need for more sustainable cementing products. Volcanic ash is a form of natural pozzolan and has a chemical composition comparable to other supplementary cementitious materials. In this paper, volcanic ash was used to partially replace cement in the ratio of 0%, 5%, 10%, 15% and 20% by volume in concrete and cured in H2SO4 and MgSO4 environment. 28-day target strength was adopted and concrete tested at 7, 14, 28 and 56 days’ hydration period. Specific gravity, bulk density and setting time test on volcanic ash were carried out. Fresh concrete tests such as slump and compacting factor test were carried out along-side hardened concrete tests like compressive strength and split tensile strength. The result shows that the maximum compressive strength at 28 days was at 0% control concrete, while at 56 days the maximum strength was observed at 10% replacement of cement with volcanic ash and it is considered as optimum percentage replacement.


2021 ◽  
Vol 1203 (2) ◽  
pp. 022074
Author(s):  
Bruno Bartulović ◽  
Sandra Juradin ◽  
Dujmo Žižić ◽  
Silvija Mrakovčić

Abstract The use of waste and recycled materials in the construction industry, especially in concrete production, is becoming increasingly popular. The production of cotton underwear generates a certain amount of knitted fabric waste. This study was conducted to investigate the possibility of using cotton knitted fabric waste (CKFW) in concrete and to explore its potential application in the construction industry. The aim of the study is not only to reduce the waste but also to add positive properties to the concrete. A total of 4 mixes were prepared for testing purposes. CKFW were cut into small pieces of size about 6-8 cm x 2 cm. The addition of CKFW was a substitute for aggregates and replaced 0, 2.5, 5 and 10% of the total volume of aggregates in the concrete mix to make the concrete lighter. All mixes have the same amount of cement, water and superplasticizer. The knitted waste was saturated in water before mixing with other concrete components. The properties of the fresh mix were determined by slump method. The dynamic modulus of elasticity, flexural strength and compressive strength were tested on 28 days old concrete specimens. The σ-δ diagram is also presented. It was found that specimens with CKFW have better flexural strength and higher ductility but lower compressive strength than the reference concrete mix. The mix with the highest percentage of CKFW reduced the compressive strength by 28%, while the specimens with lower percentage of CKFW increased the flexural strength by 20% compared to the reference mix. The capillary water absorption capacity of concrete is closely related to its durability. The water absorption by capillarity was measured after 2, 4, 8, 15, 30, 45, 60 min, and 4 and 24 h. The increase in the amount of water absorbed was found to be higher than that of the reference mix. It was related to the percentage increase in the knitted waste and the values obtained ranged from 3.3 to 5.6% of the mass of the dry sample. The largest reduction in concrete density was 3.8% compared to the reference mix. Based on the obtained results, recommendations for further tests are given.


2019 ◽  
Vol 13 (1) ◽  
pp. 67-80 ◽  
Author(s):  
Oluwaseye Onikeku ◽  
Stanley Muse Shitote ◽  
John Mwero ◽  
Adeola. A. Adedeji

Background: Concrete production around the globe is in billions of tons. Consequently, million metric tons of carbon dioxide are produced annually due to the cement consumption and production which, in turn, cause environmental menace. Objective: This research work examines the use of Bamboo Leaf Ash (BLA) as supplementary cementitious materials. Methods: The physical, mechanical, and durability properties were studied by partial substitution of cement with BLA at 0, 5, 10, 15, and 20% sequentially. Concrete cubes were cast and cured at 7, 28, 56, and 90 days. Beams were cast and cured at 28 days. A total number of five mixes were investigated, four out of the mix were dedicated to examining the impacts of BLA on the characteristics of concrete. Results: Soundness, consistency, initial and final setting time of cement paste values were lower than bamboo blended paste values at 5%, 10%, 15%, and 20% percentage replacement, respectively. The split tensile, compressive, and flexural strength values of conventional concrete were lower than bamboo leaf ash concrete accordingly. Water absorption, permeable voids, sorptivity, and bulk dry density of conventional concrete were higher than bamboo leaf ash concrete at all level of replacements. Conclusion: According to the analysis and experimental results obtained, BLA improved split tensile, compressive, and flexural strength benchmark at 10% as the optimum level of replacement. BLA reduced setting time, consistency, compacting factor, slump, water absorption, permeable voids, sorptivity, and density. To this end, BLA can be considered as a good pozzolanic material which can save the cost of construction, and improved concrete properties.


Sign in / Sign up

Export Citation Format

Share Document