scholarly journals Parametric evaluation of shear strength parameters on the stability of cut slope: a case study from Mahabaleshwar road section, India

2016 ◽  
Vol 51 ◽  
pp. 73-76
Author(s):  
Suman Panthee

Stability of rock cut slopes depends upon the type of material, discontinuity attributes and geometry present in any location. Although, gravity remains the constant important factor in dictating the slope failure but other parameters like shear strength and available shear stress along the slope also decides the stability of the slopes to great extent. The strength of the material comes from the internal bonding between the mineral grains, contact between the particles and the ability of the material to respond to the stress conditions. Variation of these material attributes fluctuate the cohesion and angle of internal friction that constitutes the most important properties in defining the strength of any material. Rock resists shear stress by these two internal mechanisms. Numerical simulation by Finite Element Method technique is attempted for assessing the stability cut slope. An attempt has been made in this study to document the behavior of strength of the material in terms of stability of slopes by parametric study of cohesion and internal friction. This study carried to understand how the factor of safety changes with reference to change in cut slope height, cohesion and internal friction of the discontinuities that attributes the shear strength of discontinuities. The study is based on Finite Element Modeling (FEM). From the study it is found that factor of safety has strongly proportional relation with cohesion and internal friction but shown inversely proportional relation with height of cut slope.

2019 ◽  
Vol 12 (6) ◽  
pp. 163-169
Author(s):  
C. Rajakumar ◽  
P. Kodanda Rama Rao

The slope stability analysis is always under severe threats in many parts of nilgiris district, causing disruption, loss of human life and economy. The stability of slopes depends on the soil shear strength parameters such as Cohesion, Angle of internal friction, Unit weight of soil and Slope geometry. The stability of a slope is measured by its factor of safety using geometric and shear strength parameter based on infinite slopes. In this research, investigation was carried out at 5 locations in Kattery watershed in nilgiris district. The factor of safety of the slope determined by Mohr Coulomb theory based on shear strength parameter calculated from direct shear test which is a conventional procedure for this study. Artificial. Neural Network (ANN) Model is used to predict the factor of safety. The input parameters for the (ANN) are chosen as Cohesion, Angle of internal friction, Density and Slope angle and the factor of safety as output. The results obtained in ANN method were compared with that of conventional method and observed a good agreement between these two methods.


2020 ◽  
Vol 857 ◽  
pp. 203-211
Author(s):  
Majid Hamed ◽  
Waleed S. Sidik ◽  
Hanifi Canakci ◽  
Fatih Celik ◽  
Romel N. Georgees

This study was undertaken to investigate some specific problems that limit a safe design and construction of structures on problematic soils. An experimental study was carried out to examine the influence of loading rate and moisture content on shear strength of organic soil. Influece of moisture content on interface friction between organic soil and structural materials was also attempted. A commonly used soil in Iraq was prepared at varying moisture contents of 39%, 57% and 75%. The experimental results showed that the increase in water content will decrease the shear stress and the internal friction angle. An increase of the shearing rate was found to decrease the shear stress and internal friction angle for all percetanges of water contents. Further, direct shear tests were carried out to detect the interface shear stress behavior between organic soil and structural materials. The results revealed that the increase in water content was shown to have significant negetavie effects on the interface internal friction and angle shear strength.


2000 ◽  
Vol 37 (2) ◽  
pp. 449-462 ◽  
Author(s):  
Charles Harris ◽  
Antoni G Lewkowicz

Active-layer detachment slides are locally common on Fosheim Peninsula, Ellesmere Island, where permafrost is continuous, the active layer is 0.5-0.75 m thick, and summer temperatures are unusually high in comparison with much of the Canadian High Arctic. In this paper we report pore-water pressures at the base of the active layer, recorded in situ on two slopes in late July and early August 1995. These data form the basis for slope stability analyses based on effective stress conditions. During fieldwork, the factor of safety within an old detachment slide on a slope at Hot Weather Creek was slightly greater than unity. At "Big Slide Creek," on a slope showing no evidence of earlier detachment failures, the factor of safety was less than unity on a steep basal slope section but greater than unity elsewhere. In the upper slope, pore-water pressures were only just subcritical. Sensitivity analyses demonstrate that the stability of the shallow active layer is strongly influenced by changes in soil shear strength. Possible mechanisms for reduction in shear strength through time include weathering of soils and gradual increases in basal active layer ice content. However, we suggest here that soil shearing during annual gelifluction movements is most likely to progressively reduce shear strengths at the base of the active layer from peak values to close to residual, facilitating the triggering of active-layer detachment failures.Key words: detachment slides, Ellesmere Island, pore-water pressures, gelifluction.


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Pan Chen ◽  
Changfu Wei ◽  
Jie Liu ◽  
Tiantian Ma

A theoretical model is developed for describing the strength property of unsaturated soils. The model is able to predict conveniently the strength changes of unsaturated soils undergoing repeated changes of water content. Suction stress is adopted in the new model in order to get the sound form of effective stress for unsaturated soils. The shear strength of unsaturated soils is dependent on its soil-moisture state based on the results of shear experiments. Hence, the parameters of this model are related tightly to hydraulic properties of unsaturated soils and the strength parameters of saturated soils. The predictive curves by the new model are coincident with experimental data that underwent single drying and drying/wetting cycle paths. Hence, hysteretic effect in the strength analysis is necessary to be considered to predict the change of shear strength of unsaturated soils that underwent drying/wetting cycles. Once the new model is used to predict the change of shear strength, lots of time could be saved due to avoiding heavy and complicated strength tests of unsaturated soils. Especially, the model can be suitable to evaluate the shear strength change of unsaturated soils and the stability of slopes experienced the drying/wetting cycles.


2016 ◽  
Vol 857 ◽  
pp. 555-559 ◽  
Author(s):  
Zuhayr Md Ghazaly ◽  
Mustaqqim Abdul Rahim ◽  
Kok Alfred Chee Jee ◽  
Nur Fitriah Isa ◽  
Liyana Ahmad Sofri

Slope stability analysis is one of the ancient tasks in the geotechnical engineering. There are two major methods; limit equilibrium method (LEM) and finite element method (FEM) that were used to analyze the factor of safety (FOS) to determine the stability of slope. The factor of safety will affect the remediation method to be underdesign or overdesign if the analysis method was not well chosen. This can lead to safety and costing problems which are the main concern. Furthermore, there were no statement that issued one of the analysis methods was more preferred than another. To achieve the objective of this research, the soil sample collected from landslide at Wang Kelian were tested to obtain the parameters of the soils. Then, those results were inserted into Plaxis and Slope/W software for modeling to obtain the factor of safety based on different cases such as geometry and homogenous of slope. The FOS obtained by FEM was generally lower compared to LEM but LEM can provide an obvious critical slip surface. This can be explained by their principles. Overall, the analysis method chosen must be based on the purpose of the analysis.


1987 ◽  
Vol 24 (4) ◽  
pp. 656-663 ◽  
Author(s):  
N. Eyles ◽  
John J. Clague

Sections cut through the Quaternary sediment fill of the Fraser River valley in central British Columbia provide evidence for large-scale landsliding during Pleistocene time. Especially notable are thick, laterally extensive diamict beds, consisting mainly of Tertiary rock debris, that occur near the base of glaciolacustrine sequences. These beds were deposited by subaqueous debris flows during one or more periods of lake ponding when advancing Pleistocene glaciers blocked the ancestral Fraser River. The association of diamict beds and glaciolacustrine sediments deposited during periods of glacier advance may indicate a genetic link between slope failure and lake filling. These observations (1) demonstrate the adverse effects of high pore pressures on the stability of slopes underlain by poorly indurated Tertiary rocks and (2) extend the known history of landslides involving these rocks back into the Pleistocene. Key words: landslides, debris flows, Pleistocene, glacial lake.


2011 ◽  
Vol 90-93 ◽  
pp. 676-679 ◽  
Author(s):  
Ting Kai Nian ◽  
Ke Li Zhang ◽  
Run Qiu Huang ◽  
Guang Qi Chen

The stability and failure mode for a 3D vertical slope with transverse earthquake load and surcharge have been an interesting issue, especially in building excavation and wharf engineering. In order to further reveal the seismic and surcharge effect, a three-dimensional elasto-plastic finite element(FE) code combined with a strength reduction procedure is used to yield a factor of safety and failure mode for a vertical slopes under two horizontal direction pseudo-static(PS) coefficient and surcharge on the slope top, respectively. Comparative studies are carried out to investigate the effect of seismic coefficient, surcharge intensity and location on the stability and the failure mechanism for a 3D vertical slope including an inclined weak layer. Several important findings are also achieved.


2008 ◽  
Vol 35 (6) ◽  
pp. 567-573 ◽  
Author(s):  
Valentim Capuzzo Neto ◽  
Márcio R.S. Corrêa ◽  
Marcio A. Ramalho

There is no normalized test to assess the shear strength of vertical interfaces of interconnected masonry walls. The approach used to evaluate this strength is normally indirect and often unreliable. The aim of this study is to propose a new test specimen to eliminate this deficiency. The main features of the proposed specimen are failure caused by shear stress on the vertical interface and a small number of units (blocks). The paper presents a numerical analysis based on the finite element method, with the purpose of showing the theoretical performance of the designed specimen, in terms of its geometry, boundary conditions, and loading scheme, and describes an experimental program using the specimen built with full- and third-scale clay blocks. The main conclusions are that the proposed specimen is easy to build and is appropriate to evaluate the shear strength of vertical interfaces of masonry walls.


2020 ◽  
pp. 65-75
Author(s):  
Liudmyla Skochko ◽  
Viktor Nosenko ◽  
Vasyl Pidlutskyi ◽  
Oleksandr Gavryliuk

The stability of the slope in the existing and design provisions is investigated, the constructive decisions of retaining walls on protection of the territory of construction of a residential complex in a zone of a slope are substantiated. The stability of the slope when using rational landslide structures is estimated. The results of the calculation of the slope stability for five characteristic sections on the basis of engineering-geological survey are analyzed. For each of the given sections the finite-element scheme according to the last data on change of a relief is created. The slope was formed artificially by filling the existing ravine with construction debris from the demolition of old houses and from the excavation of ditches for the first houses of the complex. Five sections along the slope are considered and its stability in the natural state and design positions is determined. Also the constructive decisions of retaining walls on protection of the territory of construction of a residential complex as along the slope there are bulk soils with various difference of heights are substantiated. This requires a separate approach to the choice of parameters of retaining walls, namely the dimensions of the piles and their mutual placement, as well as the choice of the angle of the bulk soil along the slope. The calculations were performed using numerical simulation of the stress-strain state of the system "slope soils-retaining wall" using the finite element method. An elastic-plastic model of soil deformation with a change in soil parameters (deformation module) depending on the level of stresses in the soil is adopted. Hardening soil model (HSM) used. Calculations of slope stability involve taking into account the technological sequence of erection of retaining walls and modeling of the phased development of the pit. The simulation was performed in several stages: Stage 1 - determination of stresses from the own shaft, Stage 2 - assessment of slope stability before construction, Stage 3 - installation of retaining wall piles, Stage 4 - assessment of slope stability after landslides. Based on these studies, practical recommendations were developed for the design of each section of the retaining wall in accordance with the characteristic cross-sections.


Author(s):  
Shaoyang Dong ◽  
Xiong (Bill) Yu

A significant number of landslides occur in cold regions because of freezing and thawing cycles. The instability of thawing slopes can cause serious damage to transportation infrastructure and property, and even loss of human life. This type of landslide is difficult to analyze by the traditional limit-equilibrium methods, however, because of the complicated multi-physics processes involved. This paper describes a holistic microstructure-based random finite element model (RFEM) to simulate the stability of a thawing slope. The RFEM model is developed to simulate the bulk behaviors of frozen and unfrozen soils based on the behaviors of individual phases. The phase coded image of a frozen silty clay is first custom built and then converted into a finite element model. The mechanical behaviors of individual phases of the frozen soil are calibrated by uniaxial compressive test. The triaxial test is then simulated by RFEM to obtain the shear strength parameters of frozen and unfrozen soils. Coupled thermal-mechanical REFM models are developed to simulate the effects of temperature on the displacement field and stress field in the slope. From the results, the local factor of safety field can be determined. The development of local factor of safety and potential failure surface associated with the thawing process over a typical year are simulated by this new model. The variations in the stability of thawing slopes predicted by this model are consistent with field observations as well as the global-wise slope stability analysis.


Sign in / Sign up

Export Citation Format

Share Document