scholarly journals STRUCTURAL BEHAVIOR OF HYBRID REINFORCED CONCRETE COUPLED BEAMS CONTAINING REACTIVE POWDER CONCRETE AND HIGH STRENGTH CONCRETE

2021 ◽  
Vol 25 (02) ◽  
pp. 68-77
Author(s):  
Hiba A. Sabit ◽  
◽  
Aamer N. Abbas ◽  

Reactive powder concrete and high strength concrete have superior mechanical and structural properties, however, the major drawback of this new construction material is its high cost compared to traditional concrete. This study presents an experimental investigation on the structural behavior of hybrid rectangular cross section (coupled) reinforced concrete beams poured with normal and high strength concrete (HSC) at compression chord, normal strength concrete (NSC) at ribs, and reactive powder concrete (RPC) at tension chord. The experimental work consists of pouring and testing four specimens with dimensions (1100mm length, 100 mm width, and 400 mm height). First specimen, rectangular solid normal concrete beam for comparison with specimens, second specimen, coupled beam poured with normal strength concrete at top chord, and two other specimens of coupled beams cast with high strength concrete with two compressive strength (50 MPa and 70 MPa) at top chord. The effect of top chord concrete type at each specimen on ultimate load capacity, energy absorption, deflection and cracking load are studied in this investigation. Experimental results showed that the ultimate load carrying capacity and energy absorption increased to 76.9 % and 108.33 % respectively, compared with the solid specimen and recorded a reduction in deflection values through loading life and cracking load when using higher compressive strength of high strength concrete in compression chord in addition to reactive powder concrete in tension zone.

2018 ◽  
Vol 21 (11) ◽  
pp. 1723-1732 ◽  
Author(s):  
Venkatesh KR Kodur

High-strength concrete is being increasingly used in a number of building applications, where structural fire safety is one of the primary design considerations. Many research studies clearly indicate that the fire performance of high-strength concrete is different from that of normal-strength concrete and that high-strength concrete may not exhibit same level of performance as normal-strength concrete under fire conditions. This article outlines key characteristics that influence the performance of high-strength concrete structural members under fire conditions. Data generated in previous experimental and numerical studies are utilized to illustrate various factors that influence fire performance of high-strength concrete structural members. Based on the published data, observations and trends on the behavior of high-strength concrete members, innovative strategies for mitigating spalling and enhancing fire resistance of high-strength concrete structural members are proposed.


2012 ◽  
Vol 174-177 ◽  
pp. 1090-1095 ◽  
Author(s):  
Kai Pei Tian ◽  
Yang Ju ◽  
Hong Bin Liu ◽  
Jin Hui Liu ◽  
Li Wang ◽  
...  

The explosive spalling of high-strength concrete due to fire is a problem that has garnered increasingly widespread attention, particularly the explosive spalling of reactive powder concrete (RPC). For years, based on the vapor pressure mechanism, the addition of fibers has been demonstrated to be somewhat effective in protecting against spalling. However, relevant experiments indicate that fibers are not effective for dense concrete, which is a challenge for the simple vapor pressure mechanism in providing spalling resistance for RPC. The authors found that silica fume plays an important role in the explosive spalling of RPC. Thus, four classes of RPCs with different ratios of silica fume were prepared, and the spalling phenomena and the inner temperature distribution during heating were investigated. The results show that silica fume content has a prominent effect on the spalling process of RPC.


2000 ◽  
Vol 3 (3) ◽  
pp. 245-253 ◽  
Author(s):  
P. Mendis ◽  
C. French

The use of high-strength concrete is becoming popular around the world. The american code, ACI 318–95 is used in many countries to calculate the development length of deformed bars in tension. However, current design provisions of ACI 318–95 are based on empirical relationships developed from tests on normal strength concrete. The results of a series of tests on high-strength concrete, reported in the literature, from six research studies are used to review the existing recommendations in ACI 318–95 for design of splices and anchorage of reinforcement. It is shown that ACI 318–95 equations may be unconservative for some cases beyond 62 MPa (9 ksi).


2011 ◽  
Vol 477 ◽  
pp. 333-339 ◽  
Author(s):  
Gai Fei Peng ◽  
Yan Teng

This paper presents a review of advances in research on fire resistance of high-strength concrete (HSC) and ultra-high-strength concrete (UHSC). Further research needs in the near future on UHSC, especially on reactive powder concrete (RPC), are also discussed. It is commonly recognized that HSC suffers strength loss in a manner basically similar to that of normal strength concrete. But the main problem of HSC is explosive spalling under high temperature, which can be solved by employing either polymer fiber or steel fiber. Since RPC200 is a type of RPC which has been successfully prepared in many counties and is to be applied to engineering practice, fire resistance of RPC200 needs a series of investigations urgently. The objectives of such investigations are to restrain explosive spalling and minimizing spalling probability, so as to ensure satisfactory fire resistance of RPC. It is expected that a research will be carried out on explosive spalling behavior, fracture properties, and micro-structure, to establish a mechanism as well as technical measures for improving fire resistance of RPC.


2019 ◽  
Vol 5 (4) ◽  
pp. 819-831 ◽  
Author(s):  
Aamer Najim Abbas ◽  
Lubna M. Abd ◽  
Muhannd W. Majeed

In last decades, there is an insufficiency of fresh water and construction works are increasing day by day consuming large amount of fresh water. Therefore research is processing on to employ the treated domestic wastewater in the preparation and curing of concrete. In this investigation, the concrete slab specimens casted with normal strength concrete and modified reactive powder concrete. The concrete specimens cast by using fresh water, wastewater, and hospital effluents water. The specimens cured in all water types for 28days and 56 days. At 28days curing with wastewater, a decrease in punching shear strength was observed from 24 kN in case of curing with fresh water to 21 kN and 20 kN in case of curing with wastewater and hospital effluents water respectively. Highest strength is exhibited by 56 days curing age, it was recorded about 32 kN, 24 kN and 23 kN punching shear strength of specimens cured with fresh water, wastewater and hospital effluents water respectively. The excess quantity of bicarbonates in treated domestic wastewater as curing water results a decrease in compressive strength of concrete specimens. Appearance of first crack was also affected significantly by using wastewater and hospital effluents water as curing water; 7.5 kN, 6.5 kN and 6 kN were the first crack loads of normal strength concrete panels cured with fresh water, wastewater and hospital effluents water, and 11 kN, 10 kN and 7.5 kN were the first crack loads of modified reactive powder concrete cured with fresh water, wastewater and hospital effluents water.


2012 ◽  
Vol 446-449 ◽  
pp. 718-727
Author(s):  
Hamid Reza Azizipesteh Baglo ◽  
Mohammed Raoof

In a number of previous publications, results were reported for a series of extensive and carefully conducted tests on large scale reinforced concrete (R.C.) beams with various extents of loss of concrete cover and exposure of main reinforcement along their spans, with such areas of simulated damage being located within their regions which are dominated by either shear or flexure. These tests on R.C. beams made with normal strength concrete have covered a wide range of first order beam design parameters, with their results used to verify the generality of various theoretical models. In the present paper, much attention will be devoted to various structural characteristics (such as ultimate strength, flexural stiffness, etc.) of similar damaged R.C. beams with the proviso that, instead of the previously used normal strength concrete, the beams are made with high strength concrete. No such results (for high strength R.C. beams) have previously been reported in the public domain.


Sign in / Sign up

Export Citation Format

Share Document