scholarly journals Phytophthora root and stem rot of soybean in Iowa: minimizing losses through an improved understanding of population structure and implementation of novel management strategies

2007 ◽  
Author(s):  
Sarah Marie Cerra
2004 ◽  
Vol 94 (7) ◽  
pp. 737-742 ◽  
Author(s):  
Z. K. Atallah ◽  
B. Larget ◽  
X. Chen ◽  
D. A. Johnson

Sclerotinia sclerotiorum, the causal agent of potato stem rot, is prevalent and poorly managed on potatoes in the Columbia Basin of Washington. Because of the ubiquitous nature of the fungus and high crop diversity within the Columbia Basin, understanding the population structure and the potential for outcrossing of the pathogen would be helpful in developing disease management strategies. The population structure of S. sclerotiorum in the Columbia Basin from potato was examined using microsatellite markers and mycelial compatibility. Analysis of molecular variance revealed that 92% of the variability among 167 isolates was found within subpopulations, with limited, yet statistically significant impact of the collection date, but not the year or location of collection. Linkage disequilibrium and index of association analyses noted a potential for outcrossing in two locations, which was substantiated by the discovery of recombinant ascospores in three field-generated apothecia from the 12 apothecia examined. Microsatellite haplotypes were not correlated with mycelial compatibility groups. This high haplotypic diversity did not seem to impact pathologically important phenotypes. Greenhouse inoculations of potato plants exhibited no significant differences in aggressiveness on potato stems. Moreover, in vitro studies of response to fungicides and temperature stimuli yielded no significant differences among studied isolates. These findings illustrate the potential for outcrossing in warm temperate regions of North America, where a diversity of crops are planted simultaneously and in neighboring fields. This study also indicates that the unsatisfactory management of potato stem rot is likely not directly attributable to genetic factors, but to gaps in agricultural practices.


Biology ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 522
Author(s):  
Régis Santos ◽  
Wendell Medeiros-Leal ◽  
Osman Crespo ◽  
Ana Novoa-Pabon ◽  
Mário Pinho

With the commercial fishery expansion to deeper waters, some vulnerable deep-sea species have been increasingly captured. To reduce the fishing impacts on these species, exploitation and management must be based on detailed and precise information about their biology. The common mora Mora moro has become the main deep-sea species caught by longliners in the Northeast Atlantic at depths between 600 and 1200 m. In the Azores, landings have more than doubled from the early 2000s to recent years. Despite its growing importance, its life history and population structure are poorly understood, and the current stock status has not been assessed. To better determine its distribution, biology, and long-term changes in abundance and size composition, this study analyzed a fishery-dependent and survey time series from the Azores. M. moro was found on mud and rock bottoms at depths below 300 m. A larger–deeper trend was observed, and females were larger and more abundant than males. The reproductive season took place from August to February. Abundance indices and mean sizes in the catch were marked by changes in fishing fleet operational behavior. M. moro is considered vulnerable to overfishing because it exhibits a long life span, a large size, slow growth, and a low natural mortality.


Author(s):  
Fen Gao ◽  
Yuanhong Chen ◽  
SeaRa Lim ◽  
Allen Xue ◽  
Bao-Luo Ma

Effective nitrogen (N) management strategies are important for ensuring a balance between optimizing plant growth and minimizing disease damage. A field experiment was conducted for three years to (i) assess the effects of N fertilizer application on the growth and seed yield of canola, and severities of Sclerotinia stem rot (SSR), and (ii) determine a reasonable N-rate for optimizing plant growth and minimizing the loss from SSR in eastern Canada. The experiment was designed with factorial combinations of eight N treatments and two canola hybrids. All N-treatments reduced canola emergence with increasing preplant N application rates above 100 kg ha–1, but had a positive impact on plant height, fresh weight, dry weight and seed yield. The development of SSR showed differential responses to N application rates. Of all the treatments, the split application (50 kg N ha–1 at preplant plus 100 kg N ha–1 side-dressed at the 6-leaf stage) increased canola growth, and often produced the highest or similar seed yields to those of equivalent N rate applied as preplant. At the 150 kg ha–1 N rate, no severe development of SSR was observed in either preplant-only or split application. Overall, this study demonstrates that the split-N management strategy (50+100 kg ha–1) maintained a balance between enhancing plant growth and mitigating the negative impacts of SSR on canola.


2010 ◽  
Vol 45 (10) ◽  
pp. 1109-1116 ◽  
Author(s):  
Carlos Henrique Mendes Malhado ◽  
Paulo Luiz Souza Carneiro ◽  
Ana Claudia Mendes Malhado ◽  
Raimundo Martins Filho ◽  
Riccardo Bozzi ◽  
...  

The objective of this work was to evaluate the population structure and the genetic and phenotypic progress of Nelore cattle in Northern Brazil. Pedigree information concerning animals born between 1942 and 2006 were analyzed. Population structure was performed using the Endog program. Out of the 140,628 animals studied, 67.7, 14.52 and 3.18% had complete pedigree record of the first, second and third parental generation, respectively. Inbreeding and average relatedness coefficients were low: 0.2 and 0.13%, respectively. However, these parameters may have been underestimated, since information on pedigree was incomplete. The effective number of founders was 370 and the genetic contribution of 10, 50 and 448 most influent ancestors explained 13.2, 28 and 50% of the genetic variability in the population, respectively. The genetic variability for growth traits and population structure demonstrates high probability of increasing productivity through selective breeding. Moreover, management strategies to reduce the currently observed age at first calving and generation intervals are important for Nelore cattle genetic improvement.


2012 ◽  
Vol 69 (3) ◽  
pp. 415-429 ◽  
Author(s):  
Denis Roy ◽  
Thomas R. Hurlbut ◽  
Daniel E. Ruzzante

Understanding the factors generating patterns of genetic diversity is critical to implementing robust conservation and management strategies for exploited marine species. Yet, often too little is known about population structure to properly tailor management schemes. Here we report evidence of substantial population structure in white hake ( Urophycis tenuis ) in the Northwest Atlantic, perhaps among the highest levels of population structure exhibited by a highly exploited, widely dispersed, long-lived marine fish. We show that depth plays a role in this extensive and temporally stable structure, which does not conform to previously established fisheries management units. Three genetically distinguishable populations were identified, where all straddle several management divisions and two (Southern Gulf of St. Lawrence and Scotian Shelf) overlap in their range, coexisting within a single division. The most highly exploited population in the Southern Gulf of St. Lawrence was also the most isolated and likely the smallest (genetically effective). This work shows that conservation and management priorities must include population structure and stability in establishing effective species recovery strategies.


2009 ◽  
Vol 10 (1) ◽  
pp. 24 ◽  
Author(s):  
Allen Wrather ◽  
Steve Koenning

Research must focus on management of diseases that cause extensive losses, especially when funds for research are limited. Knowledge of yield suppression caused by various soybean diseases is essential when prioritizing research. The objective of this project was to compile estimates of soybean yield suppression due to diseases in the USA from 1996 to 2007. The goal was to provide information to help funding agencies and scientists prioritize research objectives and budgets. Yield suppression due to individual diseases varied among years. Soybean cyst nematode suppressed USA soybean yield more from 1996 to 2007 than any other disease. Phytophthora root and stem rot ranked second among diseases that most suppressed yield seven of 12 years. Seedling diseases and charcoal rot also suppressed soybean yield during these years. Research and extension efforts must be expanded to provide more preventive and therapeutic disease management strategies for producers to reduce disease suppression of soybean yield. Accepted for publication 25 February 2009. Published 1 April 2009.


2006 ◽  
Vol 63 (7) ◽  
pp. 1304-1316 ◽  
Author(s):  
Karin Boxaspen

Abstract Studies of the biology of sea lice have been conducted from various perspectives for two decades. For Lepeophtheirus spp., most of the published literature has centred on the economically important Lepeophtheirus salmonis, while for Caligus spp., research has focused on a wider range of species. The most numerous species of Caligus in North Atlantic waters, however, is Caligus elongatus, which is also economically important to salmon farming. Since the last review by Pike, A. W., and Wadsworth, S. L. (1999. Sea lice on salmonids: their biology and control. Advances in Parasitology, 44: 234–337.), research on sea lice has developed considerably, including the application of genetic methods. This new research has focused on life history biology, studying developmental stages under different environmental conditions (e.g. temperature and salinity), behaviour, distribution and the dispersal of free-living stages, monitoring practices, population structure, and modelling. The results of this research have informed risk analyses and allowed the refinement of management strategies to reduce sea lice infestations in wild and farmed populations of anadromous salmonids. Molecular techniques have been used to describe population structure and identify differences in genetic characterization of geographically separate populations and population markers. Research has been initiated to understand the parasite–host relationship at a molecular level and to develop a vaccine against sea lice.


Plant Disease ◽  
2004 ◽  
Vol 88 (4) ◽  
pp. 325-332 ◽  
Author(s):  
L. S. Kull ◽  
W. L. Pedersen ◽  
D. Palmquist ◽  
G. L. Hartman

Population variability of Sclerotinia sclerotiorum, the causal organism of Sclerotinia stem rot of soybean, was determined by mycelial compatibility grouping (MCG) and isolate aggressiveness comparisons. MCG and aggressiveness of S. sclerotiorum isolates from diverse hosts and geographic locations (Diverse Set, 24 isolates), from a soybean field in Argentina (Argentine Set, 21 isolates), and from soybean fields in DeKalb and Watseka, Illinois (DeKalb Set, 124 isolates, and Watseka Set, 130 isolates) were assessed. Among 299 isolates tested, 42 MCGs were identified, and 61% were represented by single isolates observed at single locations. Within the Diverse Set, 17 MCGs were identified; 1 MCG consisted of six isolates, and 16 MCGs consisted of one isolate each. Nine MCGs were identified within the Argentine field with two MCGs composed of either five or six isolates, two MCGs composed of two isolates, and the remaining composed of one isolate each. Each Illinois field was a mosaic of MCGs, but MCG frequencies differed between the two fields. Common MCGs were identified among the Diverse, DeKalb, and Watseka Sets, but no MCGs within the Argentine Set were observed with other sets. MCG 8 was the most frequently sampled and widely dispersed MCG and occurred at a frequency of 29, 36, and 62% in the Diverse, DeKalb, and Watseka Sets, respectively. Variation in isolate aggressiveness was assessed using a limited-term, plug inoculation technique. Isolate aggressiveness varied (P = 0.001) within the Diverse, Argentine, DeKalb, and Watseka Sets. Within widely dispersed MCGs, isolate aggressiveness varied (P ≤ 0.10); however, within locally observed MCGs detected only in single fields, isolate aggressiveness did not vary. Additionally, individual MCGs within the DeKalb and Watseka Sets differed in isolate aggressiveness. Using six soybean cultivars and six S. sclerotiorum isolates, no cultivar-isolate interaction was detected, but resistant and susceptible cultivars performed similarly when inoculated with either less or highly aggressive isolates. Pathogen population structure and variability in isolate aggressiveness may be important considerations in disease management systems.


Plant Disease ◽  
2013 ◽  
Vol 97 (12) ◽  
pp. 1660-1660 ◽  
Author(s):  
R. Khangura ◽  
W. J. MacLeod

Canola (Brassica napus L.) is a significant oilseed break crop in Western Australia. In late October 2012, canola plants (cv. Jackpot) showing typical symptoms of stem rot with bleached appearance and fluffy white fungal growth on the infected tissues were observed in an experimental plot at Katanning, Western Australia. Severely affected plants were lodged with partially filled pods and shriveled seeds. Small, irregular sclerotia (<2 mm) were found inside the plants and were more concentrated in the root and basal stem than in the upper stem regions. Ten sclerotia from three symptomatic plants were surface sterilized with 1.25% NaOCl for 1 minute, rinsed twice in sterile distilled water and plated on potato dextrose agar (PDA) supplemented with 10 mg liter–1 Aureomycin. Plates were incubated under a black light at 22 ± 2°C. Sclerotinia minor Jagger was consistently isolated as identified by colony morphology, abundant sclerotia on PDA, and size of sclerotia <2 mm (3). A pathogenicity test was conducted on six 7-week-old canola plants cv. Tawriffic. Mycelial plugs (5 mm diameter) were excised from the margins of actively growing 3-day-old cultures and attached on to the 2nd and the 4th internodes of the main stem with Parafilm. Three plants inoculated with agar plugs without mycelium served as controls. Following inoculation, the plants were kept in a misting chamber for 48 h and then transferred to a growth room at 18 ± 2°C with a 12-h photoperiod. Typical lesions of stem rot similar to those observed in the field were noticed 3 days after inoculation. Within a week, all the inoculated plants were completely girdled by the lesions with stems breaking off and collapsing at the point of inoculation. Small sclerotia formed within lesions on the outside of the diseased stems. S. minor was reisolated from the stems of symptomatic plants, fulfilling Koch's postulates. No symptoms developed on the control plants. S. minor has previously been reported on host plants other than canola in Western Australia (4), canola petals in New South Wales, Australia (2), and also on canola stems in Argentina (1). To our knowledge, this is the first report of occurrence of S. minor on canola in Western Australia. Although S. sclerotiorum is the predominant species causing stem rot in canola in Western Australia, S. minor has the potential to cause significant yield losses under favorable environmental conditions. Correct identification and monitoring a shift in pathogens is essential for implementing effective management strategies and breeding resistant varieties. References: (1) S. A. Gaetán et al. Plant Dis. 92:172, 2008. (2) T. Hind-Lanoiselet et al. Aust Plant Pathol. 30:289, 2001. (3) L. M. Kohn. Phytopathology 69:881, 1979. (4) R. Shivas. J. Royal. Soc. Western Australia 72:1, 1989.


Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1282
Author(s):  
Yu Wang ◽  
Zhongyi Jiao ◽  
Jiwei Zheng ◽  
Jie Zhou ◽  
Baosong Wang ◽  
...  

Chosenia arbutifolia (Pall.) A. Skv. is a unique and endangered species belonging to the Salicaceae family. It has great potential for ornamental and industrial use. However, human interference has led to a decrease in and fragmentation of its natural populations in the past two decades. To effectively evaluate, utilize, and conserve available resources, the genetic diversity and population structure of C. arbutifolia were analyzed in this study. A total of 142 individuals from ten provenances were sampled and sequenced. Moderate diversity was detected among these, with a mean expected heterozygosity and Shannon’s Wiener index of 0.3505 and 0.5258, respectively. The inbreeding coefficient was negative, indicating a significant excess of heterozygotes. The fixation index varied from 0.0068 to 0.3063, showing a varied genetic differentiation between populations. Analysis of molecular variance demonstrated that differentiation accounted for 82.23% of the total variation among individuals, while the remaining 17.77% variation was between populations. Furthermore, the results of population structure analysis indicated that the 142 individuals originated from three primitive groups. To provide genetic information and help design conservation and management strategies, landscape genomics analysis was performed by investigating loci associated with environmental variables. Eighteen SNP markers were associated with altitude and annual average temperature, of which five were ascribed with specific functions. In conclusion, the current study furthers the understanding of C. arbutifolia genetic architecture and provides insights for germplasm protection.


Sign in / Sign up

Export Citation Format

Share Document