scholarly journals CREEP BEHAVIOR OF CONCRETE UNDER MULTIAXIAL STRESS AT ELEVATED TEMPERATURE : Part 4. Specimen Size Effect on Triaxial Creep at Room Temperature

1979 ◽  
Vol 283 (0) ◽  
pp. 17-25
Author(s):  
SAKICHI OHGISHI ◽  
MITSUO WADA
2014 ◽  
Vol 627 ◽  
pp. 185-188 ◽  
Author(s):  
Krzysztof Nowak

Size effect for tension specimen in creep condition is not very well recognised phenomenon. The Weibull’s works on influence of nonhomogeneity of material properties on its strength suggest that such effect should take place also for creep. The most of authors regard that the stress redistribution occurring during creep considerably reduces size effect. To examine it the author performed a series of experiments for thin tin alloy wires creeping in room temperature as well as some numerical simulations. The results confirmed the existence of size effect for time to failure. The numerical analysis was made for time of first macroscopic damage occurrencet1and for time of cross-section failuret2. Both these parameters show the influence of specimen size according to size effect law, but the dependence of parametert1was more pronounced.


2021 ◽  
Vol 283 ◽  
pp. 128768
Author(s):  
Anil Kumar ◽  
Sapan Kumar Nayak ◽  
Atanu Banerjee ◽  
Tapas Laha

Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106954
Author(s):  
Costas A. Anagnostopoulos ◽  
Denis Cabja ◽  
Chrysi A. Papadimitriou

2011 ◽  
Vol 261-263 ◽  
pp. 212-216
Author(s):  
Jun Lin Tao ◽  
Li Bo Qin ◽  
Kui Li ◽  
Bin Jia

Using micro-wave heating method, the previous disadvantages of heating slowly and non-uniform are broken through. And plain concrete high temperature loading experiment system is composed of the method and material experiment machine. Many experiments of self-made concrete are carried out from room temperature to 600°C by this system. The strength and critical strain of concrete with temperature are obtained, and through analysis of the compressive stress-strain curves under different temperature, the constitutive relationship is established. The result shows that this constitutive relationship is greatly agrees with experiment. Meanwhile, the phenomenon is analyzed and explained in the progress of experiment.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


Sign in / Sign up

Export Citation Format

Share Document