scholarly journals Suspended-Sediment Budget for the North Santiam River Basin, Oregon, Water Years 2005-08

Author(s):  
Heather M. Bragg ◽  
Mark A. Uhrich
Author(s):  
Heather M. Bragg ◽  
Steven Sobieszczyk ◽  
Mark A. Uhrich ◽  
David R. Piatt

1988 ◽  
Vol 25 (9) ◽  
pp. 1450-1463 ◽  
Author(s):  
P. E. Ashmore ◽  
T. J. Day

Long-term suspended-sediment concentration and load records are available for 23 Water Survey of Canada sediment-monitoring stations in the Saskatchewan River basin, where the drainage areas range from 10 to over 300 000 km2. Mean annual sediment yield is greatest in the western Alberta Plains along the Oldman and Red Deer rivers (over 100 t km−2 year−1) and tends to increase downstream along the North and South Saskatchewan rivers until major reservoirs in Saskatchewan intervene. Average sediment concentration shows a pattern of variation similar to that of yield. Temporal aspects of suspended-sediment transport vary along the drainage network. The range and skewness of the yield–duration and concentration–duration curves are greater in the intermediate-size basins close to the Rocky Mountains and in two small basins with Prairie sources than they are in the large Prairie streams with mountain sources and the glacier-fed upper North Saskatchewan River. Similarly, infrequent flows transport a larger proportion of the annual load in the smaller Foothills and western Plains basins than in the large Prairie streams because of differences in drainage area and discharge regime.


Palaeobotany ◽  
2019 ◽  
Vol 10 ◽  
pp. 13-179
Author(s):  
L. B. Golovneva

The Chingandzha flora comes from the volcanic-sedimentary deposits of the Chingandzha Formation (the Okhotsk-Chukotka volcanic belt, North-East of Russia). The main localities of the Chingandzha flora are situated in the Omsukchan district of the Magadan Region: on the Tap River (basin of the middle course of the Viliga River), on the Kananyga River, near the mouth of the Rond Creek, and in the middle reaches of the Chingandzha River (basin of the Tumany River). The Chingandzha flora includes 23 genera and 33 species. Two new species (Taxodium viligense Golovn. and Cupressinocladus shelikhovii Golovn.) are described, and two new combinations (Arctopteris ochotica (Samyl.) Golovn. and Dalembia kryshtofovichii (Samyl.) Golovn.) are created. The Chingandzha flora consists of liverworts, horsetails, ferns, seed ferns, ginkgoaleans, conifers, and angiosperms. The main genera are Arctop teris, Osmunda, Coniopteris, Cladophlebis, Ginkgo, Sagenoptepis, Sequoia, Taxodium, Metasequoia, Cupressinocladus, Protophyllocladus, Pseudoprotophyllum, Trochodendroides, Dalembia, Menispermites, Araliaephyllum, Quereuxia. The Chingandzha flora is distinct from other floras of the Okhotsk-Chukotka volcanic belt (OCVB) in predominance of flowering plants and in absence of the Early Cretaceous relicts such as Podozamites, Phoenicopsis and cycadophytes. According to its systematic composition and palaeoecological features, the Chingandzha flora is similar to the Coniacian Kaivayam and Tylpegyrgynay floras of the North-East of Russia, which were distributed at coastal lowlands east of the mountain ridges of the OCVB. Therefore, the age of the Chingandzha flora is determined as the Coniacian. This flora is assigned to the Kaivayam phase of the flora evolution and to the Anadyr Province of the Siberian-Canadian floristic realm. The Chingandzha flora is correlated with the Coniacian Aleeky flora from the Viliga-Tumany interfluve area and with other Coniacian floras of the OCVB: the Chaun flora of the Central Chukotka, the Kholchan flora of the Magadan Region and the Ul’ya flora of the Ul’ya Depression.


2019 ◽  
Vol 56 (3) ◽  
pp. 247-266
Author(s):  
Ian Anderson ◽  
David H. Malone ◽  
John Craddock

The lower Eocene Wasatch Formation is more than 1500 m thick in the Powder River Basin of Wyoming. The Wasatch is a Laramide synorgenic deposit that consists of paludal and lacustrine mudstone, fluvial sandstone, and coal. U-Pb geochronologic data on detrital zircons were gathered for a sandstone unit in the middle part of the succession. The Wasatch was collected along Interstate 90 just west of the Powder River, which is about 50 km east of the Bighorn Mountain front. The sandstone is lenticular in geometry and consists of arkosic arenite and wacke. The detrital zircon age spectrum ranged (n=99) from 1433-2957 Ma in age, and consisted of more than 95% Archean age grains, with an age peak of about 2900 Ma. Three populations of Archean ages are evident: 2886.6±10 Ma (24%), 2906.6±8.4 Ma (56%) and 2934.1±6.6 Ma (20%; all results 2 sigma). These ages are consistent with the age of Archean rocks exposed in the northern part of the range. The sparse Proterozoic grains were likely derived from the recycling of Cambrian and Carboniferous strata. These sands were transported to the Powder River Basin through the alluvial fans adjacent to the Piney Creek thrust. Drainage continued to the north through the basin and eventually into the Ancestral Missouri River and Gulf of Mexico. The provenance of the Wasatch is distinct from coeval Tatman and Willwood strata in the Bighorn and Absaroka basins, which were derived from distal source (>500 km) areas in the Sevier Highlands of Idaho and the Laramide Beartooth and Tobacco Root uplifts. Why the Bighorn Mountains shed abundant Eocene strata only to the east and not to the west remains enigmatic, and merits further study.


2020 ◽  
Vol 9 (4(73)) ◽  
pp. 29-33
Author(s):  
N.S. Bagdaryyn

The article continues the author's research on the toponymy of the North-East of the Sakha Republic, in particular the Kolyma river basin, in the aspect of the interaction of related and unrelated languages. The relevance of this work is defined in the description of local geographical terminology of Yukagir origin, as a valuable and important material in the further study of toponymy of the region. For the first time, the toponymy of the Kolyma river basin becomes the object of sampling and linguistic analysis of toponyms with local geographical terms of Yukagir origin in order to identify and analyze them linguistically. The research was carried out by comparative method, word formation, structural, lexical and semantic analysis. As a result of the research, phonetic and morphological features are revealed, the formation of local geographical terms and geographical names of Yukagir origin is outlined, and previously unrecorded semantic shifts and dialectisms are revealed. The most active in the formation of terms and toponyms is the geographical term iилil / eҕal 'coast‘, which is justified by the representation of the Yukagirs’ coast' home, housing


1998 ◽  
Vol 38 (11) ◽  
pp. 87-95
Author(s):  
R. Fenz ◽  
M. Zessner ◽  
N. Kreuzinger ◽  
H. Kroiss

In Austria approximately 70% of the population is connected to sewerage and to biological waste water treatment plants. Whereas the urban areas are already provided with these facilities to a very high extent, effort is still needed in rural areas to meet the requirements of the Austrian legislation. The way, this task should be solved has provoked much controversy. It is mainly the question, whether centralised or decentralised sewage disposal systems are preferable from the ecological and economical point of view, that became a political issue during the last 5 years. The Institute for Water Quality and Waste Management was asked to elaborate a waste water management concept for the Lainsitz River Basin, a mainly rural area in the north of Austria discharging to the Elbe river. Both ecological and economical aspects should be considered. This paper presents the methodology that was applied and the criteria which were decisive for the selection of the final solution.


2021 ◽  
Vol 13 (2) ◽  
pp. 542
Author(s):  
Tarate Suryakant Bajirao ◽  
Pravendra Kumar ◽  
Manish Kumar ◽  
Ahmed Elbeltagi ◽  
Alban Kuriqi

Estimating sediment flow rate from a drainage area plays an essential role in better watershed planning and management. In this study, the validity of simple and wavelet-coupled Artificial Intelligence (AI) models was analyzed for daily Suspended Sediment (SSC) estimation of highly dynamic Koyna River basin of India. Simple AI models such as the Artificial Neural Network (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS) were developed by supplying the original time series data as an input without pre-processing through a Wavelet (W) transform. The hybrid wavelet-coupled W-ANN and W-ANFIS models were developed by supplying the decomposed time series sub-signals using Discrete Wavelet Transform (DWT). In total, three mother wavelets, namely Haar, Daubechies, and Coiflets were employed to decompose original time series data into different multi-frequency sub-signals at an appropriate decomposition level. Quantitative and qualitative performance evaluation criteria were used to select the best model for daily SSC estimation. The reliability of the developed models was also assessed using uncertainty analysis. Finally, it was revealed that the data pre-processing using wavelet transform improves the model’s predictive efficiency and reliability significantly. In this study, it was observed that the performance of the Coiflet wavelet-coupled ANFIS model is superior to other models and can be applied for daily SSC estimation of the highly dynamic rivers. As per sensitivity analysis, previous one-day SSC (St-1) is the most crucial input variable for daily SSC estimation of the Koyna River basin.


Earth ◽  
2021 ◽  
Vol 2 (1) ◽  
pp. 32-50
Author(s):  
Rocky Talchabhadel ◽  
Jeeban Panthi ◽  
Sanjib Sharma ◽  
Ganesh R. Ghimire ◽  
Rupesh Baniya ◽  
...  

Streamflow and sediment flux variations in a mountain river basin directly affect the downstream biodiversity and ecological processes. Precipitation is expected to be one of the main drivers of these variations in the Himalayas. However, such relations have not been explored for the mountain river basin, Nepal. This paper explores the variation in streamflow and sediment flux from 2006 to 2019 in central Nepal’s Kali Gandaki River basin and correlates them to precipitation indices computed from 77 stations across the basin. Nine precipitation indices and four other ratio-based indices are used for comparison. Percentage contributions of maximum 1-day, consecutive 3-day, 5-day and 7-day precipitation to the annual precipitation provide information on the severity of precipitation extremeness. We found that maximum suspended sediment concentration had a significant positive correlation with the maximum consecutive 3-day precipitation. In contrast, average suspended sediment concentration had significant positive correlations with all ratio-based precipitation indices. The existing sediment erosion trend, driven by the amount, intensity, and frequency of extreme precipitation, demands urgency in sediment source management on the Nepal Himalaya’s mountain slopes. The increment in extreme sediment transports partially resulted from anthropogenic interventions, especially landslides triggered by poorly-constructed roads, and the changing nature of extreme precipitation driven by climate variability.


Sign in / Sign up

Export Citation Format

Share Document