scholarly journals Upland rice breeding for drought tolerance (review)

2021 ◽  
pp. 15-22
Author(s):  
P. I. Kostylev ◽  
А. V. Aksenov

Upland rice grown by rice farmers is having the lowest productivity in the rice production system. Drought stress is the most severe abiotic constraint for upland rice. The improvement of rice productivity in such ecosystems is essential to meet the food security needs of the population. Therefore, the cultivation of drought tolerant rice is becoming an increasingly important task. Numerous minor traits have been proposed to assist plant breeders in their selection, but most of these traits are not used in breeding because they are not practical for breeding purposes, have low heritability, or are not very correlated with grain productivity. There has been shown, that standardization of drought screening improves heritability under stress to the values similar to those obtained for the yields under well-watered conditions. Nowadays there has now been proven that drought-resistant varieties can be developed by direct selection for productivity under stressful conditions. Currently, there have been identified many quantitative trait loci (QTL) of drought tolerance in rice, but only a few of them are suitable for use in marker breeding. However, the identified genes of great drought tolerance can be effectively used in breeding for drought tolerance. The use of molecular markers will improve the efficiency of breeding work. The current review has briefly considered the importance of rice, its various production systems, and the impact of drought stress on rice production. There have been discussed the physiological mechanisms contributing to the maintenance of grain productivity under drought conditions, and there have been analyzed the breeding methods for improvement of drought resistance.

2017 ◽  
Vol 9 (3) ◽  
pp. 138 ◽  
Author(s):  
G. M. Malemba ◽  
F. M. Nzuve ◽  
J. M. Kimani ◽  
M. F. Olubayo ◽  
J. W. Muthomi

Rice is an important food crop for human population ranking second among the mostly consumed cereal grains worldwide. Upland rice production is greatly constrained by drought stress resulting from rainfall variation patterns. Cultivation of drought tolerant varieties is considered the best option for drought management in rice production. The already released upland rice varieties are drought susceptible and have poor grain attributes hence, the aim of this study was to determine the combining ability for drought tolerance in upland rice. Four upland NERICA and two upland rice varieties were selected as parents for generating F1s crosses following 6 × 6 complete diallel. The generated 30 F1 crosses were advanced to F2 population for field evaluation. The F2 progenies together with six parents were planted in two sites; KALRO-Mwea Center Farm and Kirogo research Farm following a randomized complete block design in three replications. Drought stress was initiated 45 days after sowing after which data was collected on drought and agronomic parameters. The study revealed large genetic variations among the genotypes used. Both GCA and SCA were significant indicating the importance of both additive and non additive gene action in the expression of studied traits. In this study NERICA 2 and NERICA 15 were identified as good combiners for drought tolerance and grain yield under drought conditions. The single crosses namely; NERICA 15 × NERICA 2, NERICA 1 × NERICA 15, NERICA 11 × NERICA 15 and NERICA 2 × NERICA 15 were identified as superior for improving yield under drought conditions.


2019 ◽  
Vol 4 (1) ◽  
pp. 237-246
Author(s):  
Nneka Chidiebere-Mark ◽  
Donatus Ohajianya ◽  
Polycarp Obasi ◽  
Steve Onyeagocha

AbstractProfitability of rice production in different production systems in Ebonyi State, Nigeria was evaluated. Rice is critical for food security in Nigeria, hence, farmers need to make appropriate choices of rice production systems to optimize production and ensure an adequate domestic supply. This study used 2015 survey data from rice farming households. Rice farmers in swamp, lowland and upland rice production systems showed variability in profit. Swamp production systems had the highest return per hectare (29.37%) followed by lowland production systems (20.10%) and upland production systems (13.03%). Poor access to production credit and climate change were constraints to rice production in the area. Rice production using the swamp production system is profitable and would ensure increased production and higher returns to the farmers. It is recommended that farmers should form cooperative groups to enable them to pool resources together to boost their production.


2019 ◽  
Vol 7 (2) ◽  
pp. 160
Author(s):  
Christian Okechukwu Anyaoha ◽  
Uyokei Uba ◽  
Ejiro Onotugoma ◽  
Semon Mande ◽  
Vernon Gracen ◽  
...  

The intermittent and widespread occurrence of drought in rainfed upland rice fields across sub-Sahara Africa has led to tremendous decrease in food security in the region. Although high yielding, drought tolerant varieties have been developed over years to mitigate this trend, limited adoption had been recorded for most of these materials. This study investigated farmers’ perceptions on drought stress and their preferred traits in new upland rice varieties across two major upland rice growing states in Nigeria. Participatory Rural Appraisal was conducted among 119 rice farmers using comparative approach, probing and semi structured interviews. Result based on farmers knowledge of changes in rainfall pattern and preferred traits such as plant architecture and grain shapes in a new upland rice variety differed significantly across the two state. The results identified drought stress as one of the main constraints to upland rice production across communities. The ideal upland rice variety desired by most respondents in both states should be of medium plant height (115-130cm) characterized by white, long and bold grains. This study has demonstrated the importance of understanding farmer’s desired traits in a new upland rice variety and the need to incorporate identified traits in creation of resilient new upland rice varieties adaptable to rain-fed upland rice growing regions of Nigeria.


Agronomy ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1534
Author(s):  
Chandra Mohan Singh ◽  
Poornima Singh ◽  
Chandrakant Tiwari ◽  
Shalini Purwar ◽  
Mukul Kumar ◽  
...  

Drought stress is considered a severe threat to crop production. It adversely affects the morpho-physiological, biochemical and molecular functions of the plants, especially in short duration crops like mungbean. In the past few decades, significant progress has been made towards enhancing climate resilience in legumes through classical and next-generation breeding coupled with omics approaches. Various defence mechanisms have been reported as key players in crop adaptation to drought stress. Many researchers have identified potential donors, QTLs/genes and candidate genes associated to drought tolerance-related traits. However, cloning and exploitation of these loci/gene(s) in breeding programmes are still limited. To bridge the gap between theoretical research and practical breeding, we need to reveal the omics-assisted genetic variations associated with drought tolerance in mungbean to tackle this stress. Furthermore, the use of wild relatives in breeding programmes for drought tolerance is also limited and needs to be focused. Even after six years of decoding the whole genome sequence of mungbean, the genome-wide characterization and expression of various gene families and transcriptional factors are still lacking. Due to the complex nature of drought tolerance, it also requires integrating high throughput multi-omics approaches to increase breeding efficiency and genomic selection for rapid genetic gains to develop drought-tolerant mungbean cultivars. This review highlights the impact of drought stress on mungbean and mitigation strategies for breeding high-yielding drought-tolerant mungbean varieties through classical and modern omics technologies.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Z. Y. Su ◽  
J. J. Powell ◽  
S. Gao ◽  
M. Zhou ◽  
C. Liu

Abstract Background Fusarium crown rot (FCR) is a chronic disease in cereal production worldwide. The impact of this disease is highly environmentally dependant and significant yield losses occur mainly in drought-affected crops. Results In the study reported here, we evaluated possible relationships between genes conferring FCR resistance and drought tolerance using two approaches. The first approach studied FCR induced differentially expressed genes (DEGs) targeting two barley and one wheat loci against a panel of genes curated from the literature based on known functions in drought tolerance. Of the 149 curated genes, 61.0% were responsive to FCR infection across the three loci. The second approach was a comparison of the global DEGs induced by FCR infection with the global transcriptomic responses under drought in wheat. This analysis found that approximately 48.0% of the DEGs detected one week following drought treatment and 74.4% of the DEGs detected three weeks following drought treatment were also differentially expressed between the susceptible and resistant isolines under FCR infection at one or more timepoints. As for the results from the first approach, the vast majority of common DEGs were downregulated under drought and expressed more highly in the resistant isoline than the sensitive isoline under FCR infection. Conclusions Results from this study suggest that the resistant isoline in wheat was experiencing less drought stress, which could contribute to the stronger defence response than the sensitive isoline. However, most of the genes induced by drought stress in barley were more highly expressed in the susceptible isolines than the resistant isolines under infection, indicating that genes conferring drought tolerance and FCR resistance may interact differently between these two crop species. Nevertheless, the strong relationship between FCR resistance and drought responsiveness provides further evidence indicating the possibility to enhance FCR resistance by manipulating genes conferring drought tolerance.


Rice Science ◽  
2021 ◽  
Vol 28 (5) ◽  
pp. 493-500
Author(s):  
Vishalakshi Balija ◽  
Umakanth Bangale ◽  
Senguttuvel Ponnuvel ◽  
Kalyani Makarand Barbadikar ◽  
Srinivas Prasad Madamshetty ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
John Kanburi Bidzakin ◽  
Simon C. Fialor ◽  
Dadson Awunyo-Vitor ◽  
Iddrisu Yahaya

Irrigation production is a means by which agricultural production can be increased to meet the growing food demands in the world. This study evaluated the effect of irrigation ecology on farm household technical, allocative, and economic efficiency of smallholder rice farmers. Cross-sectional data was obtained from 350 rice farmers across rain fed and irrigation ecologies. Stochastic frontier analyses are used to estimate the production efficiency and endogenous treatment effect regression model is used to estimate the impact of irrigation ecology on rice production efficiency. The impact of irrigation ecology on technical efficiency is about 0.05, which implies farmers producing under irrigation ecology are more technically efficient in their rice production than those in rain fed production. The impact of irrigation ecology on allocative efficiency is about 0.33, which shows that farmers participating in irrigation farming are more allocatively efficient in their rice production than those in rain fed production. The impact on economic efficiency is about 0.23, meaning that farmers participating in irrigation farming are more economically efficient in their rice production than those in rain fed production. Irrigation ecology has positive impact on production efficiency; hence farmers should be encouraged to produce more under irrigation for increased yield and profit.


2020 ◽  
Vol 71 (16) ◽  
pp. 4658-4676 ◽  
Author(s):  
Gregory A Gambetta ◽  
Jose Carlos Herrera ◽  
Silvina Dayer ◽  
Quishuo Feng ◽  
Uri Hochberg ◽  
...  

Abstract Water availability is arguably the most important environmental factor limiting crop growth and productivity. Erratic precipitation patterns and increased temperatures resulting from climate change will likely make drought events more frequent in many regions, increasing the demand on freshwater resources and creating major challenges for agriculture. Addressing these challenges through increased irrigation is not always a sustainable solution so there is a growing need to identify and/or breed drought-tolerant crop varieties in order to maintain sustainability in the context of climate change. Grapevine (Vitis vinifera), a major fruit crop of economic importance, has emerged as a model perennial fruit crop for the study of drought tolerance. This review synthesizes the most recent results on grapevine drought responses, the impact of water deficit on fruit yield and composition, and the identification of drought-tolerant varieties. Given the existing gaps in our knowledge of the mechanisms underlying grapevine drought responses, we aim to answer the following question: how can we move towards a more integrative definition of grapevine drought tolerance?


2020 ◽  
Vol 8 (9) ◽  
pp. 1329
Author(s):  
Zhiqiang Pang ◽  
Ying Zhao ◽  
Peng Xu ◽  
Diqiu Yu

Among abiotic stresses, drought is one of the most important factors limiting plant growth. To increase their drought tolerance and survival, most plants interact directly with a variety of microbes. Upland rice (Oryza sativa L.) is a rice ecotype that differs from irrigated ecotype rice; it is adapted to both drought-stress and aerobic conditions. However, its root microbial resources have not been explored. We isolated bacteria and fungi from roots of upland rice in Xishuangbanna, China. Four hundred sixty-two endophytic and rhizospheric isolates (337 bacteria and 125 fungi) were distributed. They were distributed among 43 genera on the basis of 16S rRNA and internal transcribed spacer (ITS) gene sequence analysis. Notably, these root microbes differed from irrigated rice root microbes in irrigated environments; for example, members of the Firmicutes phylum were enriched (by 28.54%) in the roots of the upland plants. The plant growth-promoting (PGP) potential of 217 isolates was investigated in vitro. The PGP ability of 17 endophytic and 10 rhizospheric isolates from upland rice roots was evaluated under well-irrigated and drought-stress conditions, and 9 fungal strains increased rice seedling shoot length, shoot and root fresh weight (FW), antioxidant capability, and proline (Pro) and soluble sugar contents. Our work suggests that fungi from upland rice roots can increase plant growth under irrigated and drought-stress conditions and can serve as effective microbial resources for sustainable agricultural production in arid regions.


2006 ◽  
Vol 21 (4) ◽  
pp. 253-260 ◽  
Author(s):  
W. Roder ◽  
S. Schürmann ◽  
P. Chittanavanh ◽  
K. Sipaseuth ◽  
M. Fernandez

AbstractRice is the most important agricultural commodity of the Lao People's Democratic Republic (Lao PDR), produced largely using traditional methods with limited inputs of fertilizers and other chemicals. The country has a wide diversity in rice production systems and rice varieties, with over 3000 different varieties recorded. The rich diversity and the production environment and methods are favorable for organic rice production. Investigations were carried out to describe soil fertility conditions, management practices, opportunities and problems associated with organic production methods for rice. Soils used for rice production are mostly of low fertility, with low organic matter and N-availability. In spite of this, virtually no fertilizer inputs are used for upland rice production. Inorganic fertilizer inputs for lowland rice production have increased rapidly over the past decade, but are still below 20 kg ha−1. The most important nutrient sources are rice straw and manure from buffalo and cattle. Chromolaena odorata plays an important role in nutrient cycling in upland rice systems and is sometimes added to lowland fields. In a range of fertility management studies, yield increase ranged from 2 to 89% for manure, straw or rice husk applied at modest rates (3 t ha−1), 32–156% for modest rates of inorganic fertilizer (60 kg N ha−1) and 36–167% for combined application of manure or crop residues with inorganic fertilizer. The response to locally produced commercial organic fertilizer was poor. The most promising inputs and strategies available to optimize yields in organic rice production systems are (1) optimizing use of locally available nutrients, mostly from manure, crop residues and weed biomass, (2) N addition through green manure and legumes growing in rotation and (3) additions of P through guano or rock-phosphate. The Lao PDR is fortunate to have substantial bat guano deposits in limestone caves. Extensive experience is available on straw and husk management for lowland systems and green manure species for upland production systems.


Sign in / Sign up

Export Citation Format

Share Document