Dying in Full Detail: Mortality and Digital Documentary

2017 ◽  
Vol 26 (2) ◽  
pp. 134-137
Author(s):  
Jaimie Baron
Keyword(s):  
2018 ◽  
Vol 11 (7) ◽  
pp. 2789-2812 ◽  
Author(s):  
Werner von Bloh ◽  
Sibyll Schaphoff ◽  
Christoph Müller ◽  
Susanne Rolinski ◽  
Katharina Waha ◽  
...  

Abstract. The well-established dynamical global vegetation, hydrology, and crop growth model LPJmL is extended with a terrestrial nitrogen cycle to account for nutrient limitations. In particular, processes of soil nitrogen dynamics, plant uptake, nitrogen allocation, response of photosynthesis and maintenance respiration to varying nitrogen concentrations in plant organs, and agricultural nitrogen management are included in the model. All new model features are described in full detail and the results of a global simulation of the historic past (1901–2009) are presented for evaluation of the model performance. We find that the implementation of nitrogen limitation significantly improves the simulation of global patterns of crop productivity. Regional differences in crop productivity, which had to be calibrated via a scaling of the maximum leaf area index, can now largely be reproduced by the model, except for regions where fertilizer inputs and climate conditions are not the yield-limiting factors. Furthermore, it can be shown that land use has a strong influence on nitrogen losses, increasing leaching by 93 %.


2000 ◽  
Vol 70 (3) ◽  
pp. 370-405 ◽  
Author(s):  
Zachary Dean Sconiers ◽  
Jerry Lee Rosiek

In this article, middle school science teacher Zachary Sconiers and university researcher Jerry Rosiek introduce the sonata-form case study, a narrative structure designed to document teachers' understandings of how subject matter and sociocultural influences intersect in the classroom. Written in collaboration with the Fresno Science Education Equity Teacher Research Project, this case study is told from the perspective of Jerome Jameson, a fictional chemistry teacher, whose story is based on Sconiers's actual teaching experiences. Also integrated into the narrative are Sconiers's in-depth reflections on the connections between his commitment to science education and his commitment to promoting educational equity. The sonata-form case study is followed by an afterword, written by Rosiek and Sconiers, that describes this unique methodology for teacher inquiry in full detail. The writing process for the case study was extensive and iterative: the two authors worked closely over the course of a year to develop the narrative, with Rosiek taking the lead on revising and editing. With this case study, Sconiers and Rosiek highlight the critical need for a new form of educational research, one that "builds bridges between the discourses of educational excellence and educational equity, as well as between theory and practice."


2015 ◽  
Vol 2015 ◽  
pp. 1-26 ◽  
Author(s):  
S. Heinemeyer ◽  
J. Hernandez-Garcia ◽  
M. J. Herrero ◽  
X. Marcano ◽  
A. M. Rodriguez-Sanchez

We study the radiative corrections to the mass of the lightest Higgs boson of the MSSM from three generations of Majorana neutrinos and sneutrinos. The spectrum of the MSSM is augmented by three right handed neutrinos and their supersymmetric partners. A seesaw mechanism of type I is used to generate the physical neutrino masses and oscillations that we require to be in agreement with present neutrino data. We present a full one-loop computation of these Higgs mass corrections and analyze in full detail their numerical size in terms of both the MSSM and the new (s)neutrino parameters. A critical discussion on the different possible renormalization schemes and their implications, in particular concerning decoupling, is included.


Blood ◽  
1996 ◽  
Vol 88 (10) ◽  
pp. 3774-3784 ◽  
Author(s):  
F Morel ◽  
SJ Szilvassy ◽  
M Travis ◽  
B Chen ◽  
A Galy

The CD34 antigen is expressed on most, if not all, human hematopoietic stem cells (HSCs) and hematopoietic progenitor cells, and its use for the enrichment of HSCs with repopulating potential is well established. However, despite homology between human and murine CD34, its expression on subsets of primitive murine hematopoietic cells has not been examined in full detail. To address this issue, we used a novel monoclonal antibody against murine CD34 (RAM34) to fractionate bone marrow (BM) cells that were then assayed in vitro and in vivo with respect to differing functional properties. A total of 4% to 17% of murine BM cells expressed CD34 at intermediate to high levels, representing a marked improvement over the resolution obtained with previously described polyclonal anti-CD34 antibodies. Sixty percent of CD34+ BM cells lacked lineage (Lin) markers expressed on mature lymphoid or myeloid cells. Eighty-five percent of Sca-1+Thy-1(10)Lin- /10 cells that are highly enriched in HSCs expressed intermediate, but not high, levels of CD34 antigen. The remainder of these phenotypically defined stem cells were CD34-. In vitro colony-forming cells, day-8 and -12 spleen colony-forming units (CFU-S), primitive progenitors able to differentiate into B lymphocytes in vitro or into T lymphocytes in SCID mice, and stem cells with radioprotective and competitive long-term repopulating activity were all markedly enriched in the CD34+ fraction after single-parameter cell sorting. In contrast, CD34-BM cells were depleted of such activities at the cell doses tested and were capable of only short-term B-cell production in vitro. The results indicate that a significant proportion of murine HSCs and multilineage progenitor cells express detectable levels of CD34, and that the RAM34 monoclonal antibody is a useful tool to subset primitive murine hematopoietic cells. These findings should facilitate more direct comparisons of the biology of CD34+ murine and human stem and progenitor cells.


2021 ◽  
Vol 1202 (1) ◽  
pp. 012009
Author(s):  
Marek Truu ◽  
Romet Raun ◽  
Maret Jentson

Abstract Road pavement is expected to withstand enormous traffic loads for long time but sooner or later the deterioration reaches levels when its optimal to apply treatment. While easy to measure roughness or rutting in normal traffic speed, defects are in most countries still collected by means of time-consuming visual inspection in low traffic speeds or expensive and difficult- to-use equipment. Also, most visual inspection systems only operate with aggregated inspection data. That makes data-collection expensive and defects-based decision-making inefficient. In Estonia, defects inventory system utilizes high quality panoramic and orthogonal images to enable data collection in traffic speeds and detailed mapping of pavement defects in 10 classes. Defects mapped in full detail means, that location, shape and size of each defect is known and classified data can be effectively used twice in pavement maintenance planning: for section selection planning in road network level when aggregated and for work method selection in design process when analyzed in detail. Combined with measured lidar-based point-cloud data, detailed 3d-basemap saves both road-owner's and road designer’s valuable time in design phase. In period of 2016-2020, around 35000km of state roads were analyzed with one of the most efficient road defects inventory systems in the world. Also, around 25000 km of municipal and forest roads have been captured with same technology covering several pavement types from bicycle paths to multilane streets and motorways. Current presentation discusses outcomes of Estonian defects inventory study in 2020.


Author(s):  
Dr. Anwar ul Haq

The characters of angels(Jibrael, Izrael ,Israfeel and Rizwan) in the poetry of Iqbal are capable of great virtual importance. Through these supernatural characters, Iqbal has successfully conveyed his thoughts in a very impressive and artistic way. He was against the slavery and used these characters in his poetry to motivate Muslims to obtain the virtual goal of freedom. These characters are also the symbols of Islamic values and thoughts. They successfully convey the core subjects of Islamic thought. The researcher has shed light on this specific angle of Iqbal’s poetry in full detail.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Dennis Vollberg ◽  
Dennis Wachter ◽  
Thomas Kuberczyk ◽  
Günter Schultes

Abstract. Different sensor concepts for time-resolved cylinder pressure monitoring of combustion engines are realized and evaluated in this paper. We distinguish a non-intrusive form of measurement outside the cylinder, performed by means of a force compression rod from intrusive, real in-cylinder measurement by means of pressure membrane sensors being exposed to the hot combustion process. The force compression rod has the shape of a sine wave with thinner zones equipped with highly sensitive foil strain gauges that experience a relatively moderate temperature level of 120 ∘C. The sensor rod delivers a relative pressure value that may be influenced by neighbour cylinders due to mechanical coupling. For the intrusive sensor type, two different materials for the membrane-type sensor element were simulated and tested, one based on the ceramic zirconia and the other based on stainless steel. Due to the higher thermal conductivity of steel, the element experiences only 200 ∘C while the zirconia element reaches 300 ∘C. Metallic chromium thin films with high strain sensitivity (gauge factor of 15) and high-temperature capability were deposited on the membranes and subsequently structured to a Wheatstone bridge. The pressure evolution can be measured with both types in full detail, comparable to the signals of test bench cylinder pressure sensors. For the preferential steel-based sensor type, a reliable laser-welded electrical connection between the thin films on the membrane and a copper wire was developed. The in-cylinder pressure sensors were tested both on a diesel test bench and on a gas-fired engine. On the latter, an endurance test with 20 million cycles was passed. Reliable cylinder pressure sensors with a minimum of internal components are thus provided. The signals will be processed inside the sensor housing to provide analysis and aggregated data, i.e. mass fraction burned (MFB50) and other parameters as an output to allow for smart combustion control.


Author(s):  
G. Vedovato ◽  
Edoardo Milotti ◽  
Giovanni Andrea Prodi ◽  
Sophie Bini ◽  
Marco Drago ◽  
...  

Abstract As the Advanced LIGO and Advanced Virgo interferometers, soon to be joined by the KAGRA interferometer, increase their sensitivity, they detect an ever-larger number of gravitational waves with a significant presence of higher multipoles in addition to the dominant (2, 2) multipole. These higher multipoles can be detected with different approaches, such as the minimally-modeled burst search methods, and here we discuss one such approach based on the coherent WaveBurst pipeline (cWB). During the inspiral phase the higher multipoles produce chirps whose instantaneous frequency is a multiple of the dominant (2, 2) multipole, and here we describe how cWB can be used to detect these spectral features. The search is performed within suitable regions of the time-frequency representation; their shape is determined by optimizing the Receiver Operating Characteristics. This novel method has already been used in the GW190814 discovery paper (Astrophys. J. Lett. 896 L44) and is very fast and flexible. Here we describe in full detail the procedure used to detect the (3, 3) multipole in GW190814 as well as searches for other higher multipoles during the inspiral phase, and apply it to another event that displays higher multipoles, GW190412, replicating the results obtained with different methods. The procedure described here can be used for the fast analysis of higher multipoles and to support the findings obtained with the model-based Bayesian parameter estimates.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Torben Madsen Kvist ◽  
Peter Schwarz ◽  
Niklas Rye Jørgensen

Inflammatory diseases are often multiorganic diseases with manifestations not related directly to the primary affected organ. They are often complicated by a generalized bone loss that subsequently leads to osteoporosis and bone fractures. The exact mechanism for the accompanying bone loss is not understood in full detail, but factors such as glucocorticoid treatment, immobilization, malnutrition, and insufficient intake of vitamin D play a role. However, it has become evident that the inflammatory process itself is involved and the resulting bone loss is termed immune-mediated bone loss. It stems from an increase in bone resorption and the pro-inflammatory cytokines tumor necrosis factor alpha and interleukin 1 beta and has been shown to not only mediate the inflammatory response but also to strongly stimulate bone degradation. The purinergic P2X7 receptor is central in the processing of these two cytokines and in the initiation of the inflammatory response, and it is a key molecule in the regulation of both bone formation and bone resorption. The aim of this review is therefore to provide evidence-based novel hypotheses of the role of ATP-mediated purinergic signalling via the P2X7 receptor in immune-mediated bone loss and -osteoporosis.


2021 ◽  
Author(s):  
Handing Xu ◽  
Zhenguo Nie ◽  
Qingfeng Xu ◽  
Xinjun Liu

Abstract Due to the limit of mesh density, the improvement of the spatial resolution of numerical computation always leads to a decrease in computing efficiency. Aiming at this inability of numerical computation, we propose a novel method for boosting the mesh density in finite element method (FEM) within 2D domain. Based on the von Mises stress fields of 2D plane-strain problems computed by the FEM, this method utilizes a deep neural network named SuperMeshingNet to learn a non-linear mapping from low mesh-density to high mesh-density in stress fields, and realizes the improvement of numerical computation accuracy and efficiency simultaneously. We adopt residual dense blocks into our mesh-density boost model – SuperMeshingNet to extract abundant local features and enhance the prediction capacity. The results indicate that SuperMeshingNet is able to effectively increase the spatial resolution of the von Mises stress fields under the multiple scaling factors: 2X,4X,and8X. Compared with the targets, the relative error of SuperMeshingNet is 2.44%, which shows better performance than the interpolation methods. Besides, SuperMeshingNet reveals an astonishing strength in predicting the maximum stress value. We publicly share our work with full detail of implementation at https://github.com/zhenguonie/2021_SuperMeshing_2D_Plane_Strain.


Sign in / Sign up

Export Citation Format

Share Document