Application of Backside Photo and Thermal Emission Microscopy Techniques to Advanced Memory Devices

Author(s):  
S.-S. Lee ◽  
J.-S. Seo ◽  
N.-S. Cho ◽  
S. Daniel

Abstract Both photo- and thermal emission analysis techniques are used from the backside of the die colocate defect sites. The technique is important in that process and package technologies have made front-side analysis difficult or impossible. Several test cases are documented. Intensity attenuation through the bulk of the silicon does not compromise the usefulness of the technique in most cases.

Author(s):  
Magdalena Sienkiewicz ◽  
Philippe Rousseille

Abstract This paper presents a case study on scan test reject in a mixed mode IC. It focuses on the smart use of combined mature FA techniques, such as Soft Defect Localization (SDL) and emission microscopy (EMMI), to localize a random scan test anomaly at the silicon bulk level.


Author(s):  
I. Österreicher ◽  
S. Eckl ◽  
B. Tippelt ◽  
S. Döring ◽  
R. Prang ◽  
...  

Abstract Depending on the field of application the ICs have to meet requirements that differ strongly from product to product, although they may be manufactured with similar technologies. In this paper a study of a failure mode is presented that occurs on chips which have passed all functional tests. Small differences in current consumption depending on the state of an applied pattern (delta Iddq measurement) are analyzed, although these differences are clearly within the usual specs. The challenge to apply the existing failure analysis techniques to these new fail modes is explained. The complete analysis flow from electrical test and Global Failure Localization to visualization is shown. The failure is localized by means of photon emission microscopy, further analyzed by Atomic Force Probing, and then visualized by SEM and TEM imaging.


Author(s):  
Y. N. Hua ◽  
Z. R. Guo ◽  
L. H. An ◽  
Shailesh Redkar

Abstract In this paper, some low yield cases in Flat ROM device (0.45 and 0.6 µm) were investigated. To find killer defects and particle contamination, KLA, bitmap and emission microscopy techniques were used in fault isolation. Reactive ion etching (RIE) and chemical delayering, 155 Wright Etch, BN+ Etch and scanning electron microscope (SEM) were used for identification and inspection of defects. In addition, energy-dispersive X-ray microanalysis (EDX) was used to determine the composition of the particle or contamination. During failure analysis, seven kinds of killer defects and three killer particles were found in Flat ROM devices. The possible root causes, mechanisms and elimination solutions of these killer defects/particles were also discussed.


2011 ◽  
Vol 57 (No. 2) ◽  
pp. 37-50 ◽  
Author(s):  
J. Malaťák ◽  
L. Passian

The article addresses the urgent questions regarding the use of biomass as a fuel for combustion equipment of the heat output up to 25 kW. The article is based on the determined elemental analyses of six samples of fuel taken both from the wood mass and herbaceous biomass. These samples underwent the stoichiometric analysis of fuels. After the stoichiometric analysis the heat-emission characteristics were determined on two combustion equipments. The results of carried out elemental and stoichiometric analyses indicate higher values of nitrogen, sulphur and chlorine concentration in herbaceous biomass from agriculture compared to the analyzed wood mass. The selection of combustion equipment is particularly influenced by increased contents of sulphur and chlorine (corrosive behaviour). The net calorific value of the analyzed samples taken from the wood mass is higher than of samples taken from the herbaceous biomass. The net calorific value of fuels from herbaceous biomass is reduced due to a higher content of ashes in the fuel. The results of thermal-emission analyses show higher values of nitrogen oxides, sulphur and chlorine concentrations in the herbaceous biomass compared to the analyzed wood mass. The emission concentrations of carbon monoxide for wood fuels and herbaceous biomass also depend on the type of combustion equipment and setting of combustion air volume. The increased emissions of hydrogen chloride generated by various combustion equipments are primarily caused by the volume of combustion air and the amount of chlorine in the fuel itself. The higher the volume of combustion air brought into the combustion chamber is, the higher the emissions of hydrogen chloride are. Based on the analyses we can also draw a conclusion that the spaces of combustion equipment during combustion should be most burdened with the herbaceous biomass.


2020 ◽  
Vol 15 (55) ◽  
pp. 258-270
Author(s):  
Filippo Cucinotta ◽  
Antonino D'Aveni ◽  
Eugenio Guglielmino ◽  
Antonino Risitano ◽  
Giacomo Risitano ◽  
...  

In this paper thermal analysis was applied to determine the “Critical Stress” of concrete, different from its ultimate strength, able to produce the first damage in the structures under compressive loads. The Critical Stress can be thought as the stress able to produce the beginning of fatigue rupture within the material. Several specimens of high strength concrete were tested in order to define the incipient crack phenomena, also in internal part of the specimen not accessible by direct inspections, with the aid of infrared thermography. A finite element analysis completes the study and compares, for the same static loading conditions, the stress state with the experimental thermographic images. The final results show as the coupling of normal compressive test and the acquisition of the thermal images can be a useful aid to estimate a security stress value, indeed the Critical Stress, before the Ultimate Serviceability Limit (SLU) of the structure, defined as the maximum load condition before its failure.


Author(s):  
Congjun Wang ◽  
Martin E. Kordesch

Carbon is a pervasive contaminant on technologically important surfaces, and has long been of interest in surface science and microscopy. Recent advances in the production of high density carbon films and synthetic diamond films [1,2] have focused attention on the nucleation and growth of carbon on refractory metal substrates, semiconductors and other phases of carbon itself. Some of the issues involved are the role of carbides in promoting diamond nucleation and the specifics of graphite removal from the film through reactive sputtering or conversion to more dense phases (by as yet not understood processes).Emission microscopy, in particular photo- and thermal emission microscopy, is especially suited to the study of carbon film nucleation and growth. Carbides are easily observed. [3] Because several carbon phases have differing work functions, they may be selectively imaged by variation of the incident light wavelength, and thus the photoemission threshold, providing information on film composition in the image. Figures 1 and 2 show a Pt(100) surface covered with CO, atomic carbon and some graphitic areas, imaged with a microscope similar to the one in [3] using an HBO 100 lamp. [4] In figure 2 a 280 nm edge filter was placed in front of the lamp, so that only the graphitic areas (work function below 4.4 eV) are visible. Due to the image contrast in photoemission from differing materials, decoration of steps and defects by carbon is visible. In figure 3 step bunch edges on the Pt(100) surface have been decorated with carbon from the decomposition of ethylene; figure 4 shows another area of the surface where the terraces are carbon coated, and the step edges are “clean.” The slip trace features suggest that the dark lines are mono-atomic steps.[5]


2011 ◽  
Vol 2011 (DPC) ◽  
pp. 002160-002198
Author(s):  
Rudolf Schlangen ◽  
Herve Deslandes ◽  
Toru Toda ◽  
Toshinobu Nagatomo ◽  
Shigeki Sako ◽  
...  

Root cause analysis for package defects is currently performed by de-processing the package until such defects can be physically seen. However, many such defects within the package are removed, or are confused with defects created during de-processing itself. 3D X-ray has been used to analyze such physical defects within a packaged device in a non-destructive manner. However, the increasing density and associated shrinkage of components such as multi-layered substrates require significantly higher resolutions, which translates to longer times. High resolution X-ray is impractical when searching for a defect over a wide area due to the time to acquire detailed 3D images (~24 hrs). Thermal emission analysis has been widely used for localizing defects on ICs. Recent advancement in thermal emission camera technology coupled with lock-in thermography has allowed orders of magnitude better sensitivity ( < 1μW) and improvement in localization resolution (x,y to < 3 um). However, the application of lock-in thermography has been primarily limited to defect localization at the die level [1]. A a highly sensitive MWIR camera combined with a real time lock-in technique demonstrates the capability to localize defects within packaged devices, even through its mold compound. The technique accurately predicts the depth (z) of a thermal defect within the device (< + 5%) This paper will demonstrate multiple examples of the successful combination of advanced lock-in thermography analysis and high resolution 3D X-ray for totally non-destructive defect location within a packaged device. This initial accurate thermal localization in x, y and z enables the high resolution 3D X-ray system to focus analysis to a few microns so that the defect can be seen quickly (< 1 hr), enabling detection and analysis of previously undetected defects with highest throughput.


1991 ◽  
Vol 38 (2) ◽  
pp. 713-718 ◽  
Author(s):  
J.A. Anderson ◽  
P.P. Antich ◽  
J.O. Prior ◽  
P.V. Kulkarni ◽  
F.H. Tuley ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document