A Novel Method to Analyze the Deep Trench Capacitors in DRAM

Author(s):  
Jack Lee ◽  
Kuo-Hui Huang ◽  
Jen-Lang Lue

Abstract A novel method has been developed to reveal the entire three dimensional (3D) deep trench (DT) capacitors for inspection in DRAM, especially NO capacitor dielectrics, ASG residues at corners, morphology etc., for process evaluation and failure analysis. It offers an alternative to conventional cross-section polishing, top down polishing or FIB milling methods. A DRAM chip was ground and polished down to a certain level from the chip backside. An etching solution was then applied to enhance the DTs appearance. 3D DTs can be inspected in scanning electron microscopy (SEM). The entire DTs or specific DT also can be lifted out for detailed investigation in transmission electron microscopy (TEM). The innovation of this technique is to provide a quick 3D observation in SEM, and much more flexibility to an entire DT inspection in TEM, which were not presented before.

Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


2000 ◽  
Vol 6 (2) ◽  
pp. 151-157 ◽  
Author(s):  
I. Hernando ◽  
I. Pérez-Munuera ◽  
M.A. Lluch

Electron microscopy has made a significant contribution to our knowledge of the structure of foods and the interaction among their components. In this paper, several electron microscopy techniques are applied to study the Burgos cheese microstructure. Burgos cheese samples fixed in glutaraldehyde and observed by scanning electron microscopy showed a continuous three-dimensional network of protein, with roundish empty spaces, which probably contained fat, whey or air in the original sample. Fixation in osmium tetroxide showed the distribution of fat, which is organized in globules (1-3 ltm in diameter). Water closely and uniformly interacting with proteins and the protein shells deposited around the fat globule membranes (0.2 pm thick) can be observed by cryo-scanning electron microscopy. Samples observed by transmission electron microscopy showed loosely or ' strongly aggregated proteins forming the continuous network. Furthermore, a core and lining structure were distinguished; this structure could be related to the presence of B-lactoglobulin. Finally, this technique allows observations of individual casein grains and the interstitial spaces among them.


Author(s):  
S. Siew

A significant advance in our knowledge of gastrointestinal pathology has been achieved through endoscopy of the accessible portions of the alimentary tract. This procedure has allowed the evaluation of morphological characteristics of the mucosa by means of direct viewing in situ and through microscopy (light and transmission electron) of biopsies taken from selected areas. The importance of examination of the three dimensional configuration of the mucosal surface has been recognized, particularly in the assessment of the intestinal villi in cases of malabsorption, where it is recommended that the biopsies should be examined first by means of the dissecting microscope. Therefore, there is an obvious indication here for scanning electron microscopy, with its far greater potential.


Author(s):  
P. Bailey ◽  
K. Holloway ◽  
L. Clevenger ◽  
N. Bojarczuk

Current semi-conductor technology uses low-resistivity metals, as Cu, for integrated circuit conductor lines and contact structures. Copper, however, is quite mobile in silicon at elevated processing temperatures and a diffusion barrier such as Ta, is therefore required between the Si and Cu. The interdiffusion of Cu and Si with Ta as a diffusion barrier was studied in samples annealed between 500°C and 800“C, using scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Secondary electron images obtained in the SEM, from 5keV to 25keV accelerating voltages were correlated to the structural information obtained by cross-section TEM. This work showed that annealing produced a compositionally non-uniform underlayer beneath the Ta film, and that the technique of varying the accelerating voltage in the SEM provides a means of quickly obtaining such information about underlying structures.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
J. C. Russ ◽  
E. McNatt

In order to study the retention of copper in cirrhotic liver, rats were made cirrhotic by carbon tetrachloride inhalation twice weekly for three months and fed 0.2% copper acetate ad libidum in drinking water for one month. The liver tissue was fixed in osmium, sectioned approximately 2000 Å thick, and stained with lead citrate. The section was examined in a scanning electron microscope (JEOLCO JSM-2) in the transmission electron mode.Figure 1 shows a typical area that includes a red blood cell in a sinusoid, a disse, and a portion of the cytoplasm of a hepatocyte which contains several mitochondria, peribiliary dense bodies, glycogen granules, and endoplasmic reticulum.


Author(s):  
Vicki L. Baliga ◽  
Mary Ellen Counts

Calcium is an important element in the growth and development of plants and one form of calcium is calcium oxalate. Calcium oxalate has been found in leaf seed, stem material plant tissue culture, fungi and lichen using one or more of the following methods—polarized light microscopy (PLM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and x-ray diffraction.Two methods are presented here for qualitatively estimating calcium oxalate in dried or fixed tobacco (Nicotiana) leaf from different stalk positions using PLM. SEM, coupled with energy dispersive x-ray spectrometry (EDS), and powder x-ray diffraction were used to verify that the crystals observed in the dried leaf with PLM were calcium oxalate.


Sign in / Sign up

Export Citation Format

Share Document