Defect Localization Using Time-Resolved Photon Emission on SOI Devices that Fail Scan Tests

Author(s):  
Dan Bodoh ◽  
Ed Black ◽  
Kris Dickson ◽  
Ron Wang ◽  
Tim Cheng ◽  
...  

Abstract Time-resolved photon emission has been shown to be useful in analyzing clock skews and timing-related defects in flip-chip devices. In practice, time-resolved photon emission using the S-25 Quantar detector cannot be used at long loop lengths (typically >10 μs). This paper discusses a near-infrared (NIR) optimized time-resolved emission system to demonstrate that even with long loop lengths time-resolved photon emission can be extremely useful for defect localization. Specifically, it describes time-resolved photon emission system, and shows how time-resolved photon emission was used to solve two different issues that caused scan fails on silicon-on-insulator devices, and briefly discusses the interpretation of optical waveforms. The two issues are presented as case studies.

Author(s):  
Jim Vickers ◽  
Nader Pakdaman ◽  
Steven Kasapi

Abstract Dynamic hot-electron emission using time-resolved photon counting can address the long-term failure analysis and debug requirements of the semiconductor industry's advanced devices. This article identifies the detector performance parameters and components that are required to scale and keep pace with the industry's requirements. It addresses the scalability of dynamic emission with the semiconductor advanced device roadmap. It is important to understand the limitations to determining that a switching event has occurred. The article explains the criteria for event detection, which is suitable for tracking signal propagation and looking for logic or other faults in which timing is not critical. It discusses conditions for event timing, whose goal is to determine accurately when a switching event has occurred, usually for speed path analysis. One of the uses of a dynamic emission system is to identify faults by studying the emission as a general function of time.


Author(s):  
Seth J. Prejean ◽  
Joseph Shannon

Abstract This paper describes improvements in backside deprocessing of CMOS (Complimentary Metal Oxide Semiconductor) SOI (Silicon On Insulator) integrated circuits. The deprocessing techniques described here have been adapted from a previous research publication on backside deprocessing of bulk CMOS integrated circuits [1]. The focus of these improvements was to provide a repeatable and reliable methodology of deprocessing CMOS devices from the backside. We describe a repeatable and efficient technique to deprocess flip chip packaged devices and unpackaged die from the backside. While this technique has been demonstrated on SOI and bulk devices, this paper will focus on the latest SOI technology. The technique is useful for quick and easy access to the transistor level while preserving the metal interconnects for further analysis. It is also useful for deprocessing already thinned or polished die without removing them from the package. Removing a thin die from a package is very difficult and could potentially damage the device. This is especially beneficial when performing physical failure analysis of samples that have been back thinned for the purpose of fault isolation and defect localization techniques such as: LIVA (Laser Induced Voltage Alteration), TIVA (Thermally Induce Voltage Alteration), SDL [2] (Soft Defect Localization), and TRE (Time Resolved Emission) analysis. An important fundamental advantage of deprocessing SOI devices is that the BOX (Buried Oxide) layer acts as a chemical etch stop when etching the backside or bulk silicon. This leaves the transistor active silicon intact for analysis. Further delayering allows for the inspection of the active silicon, gate oxide, silicide, spacers, and poly. After deprocessing the transistor level, the metal layers are still intact and, in most cases, still electrically connected to the outside world. This can provide additional failure analysis opportunities.


Author(s):  
Todd M. Simons ◽  
Bob Davis

Abstract Photon emission microscopy (PEM) provides a valuable first step in the failure analysis process. An analysis of a mixed signal bipolar/CMOS silicon on insulator (SOI) device revealed an abnormal emission site that appeared to emanate from the oxide isolation ring. Subsequent mechanical probing of the emitting bipolar transistor revealed node voltages nearly identical to a known good reference unit that had no emission site at the affected transistor. This article analyzes the reasons for the emission site on one transistor and not the other even though the node voltages were the same. It was observed that while the node voltages were nearly identical, the available current paths were not. The different paths directly related to the amount of available carriers for recombination in the base. The construction of the SOI device creates unique optical paths for emission sites not observed in non-SOI devices. It can be concluded that the failure mechanism does not always reside at the abnormal PEM site.


Author(s):  
S.H. Lee ◽  
Y.W. Lee ◽  
K.T. Lee ◽  
C.Y. Choi ◽  
H.W. Shin ◽  
...  

Abstract Innovations in semiconductor fabrication processes have driven process shrinks partly to fulfill the need for low power, system-on-chip (SOC) devices. As the process is innovated, it influences the related design debug and failure analysis which have gone through many changes. Historically for signal probing, engineers analyzed signals from metal layers by using e-beam probing methods [1]. But due to the increased number of metal layers and the introduction of flip chip packages, new signal probing systems were developed which used time resolved photon emission (TRE) to measure signals through the backside. However, as the fabrication process technology continues to shrink, the operating voltage drops as well. When the operating voltage drops below 1.0V, signal probing systems using TRE find it harder to detect the signals [2]. Fortunately, Laser Voltage Probing (LVP) technology [3] is capable of probing beyond this limitation of TRE. In this paper, we used an LVP system to analyze and identify a functional shmoo hole failure. We also proposed the design change to prevent its reoccurrence.


Author(s):  
Zhongling Qian ◽  
Christof Brillert ◽  
Christian Burmer ◽  
Yoshiyuki Yokoyama

Abstract In this paper, the differential and lockin imaging techniques of Dynamic Photon Emission (DPE) were developed by using highly sensitive near-infrared InGaAs camera in time integrated mode. At first, the setup and method for differential imaging of DPE (DI-DPE) are introduced. The unique debug and pinpointing capability of fails of DI-PEM is discussed in combination with two case studies. Based on DI-DPE, the setup and method for Lockin imaging of DPE (LI-DPE) are then developed for such cases where the correlated DPE is enhanced in strong photon emission background. The correlation in LI-DPE can separate the emission spots from different power domains.


2020 ◽  
Vol 23 (3) ◽  
pp. 227-252
Author(s):  
T.E. Rudenko ◽  
◽  
A.N. Nazarov ◽  
V.S. Lysenko ◽  
◽  
...  

Author(s):  
B.J. Cain ◽  
G.L. Woods ◽  
A. Syed ◽  
R. Herlein ◽  
Toshihiro Nomura

Abstract Time-Resolved Emission (TRE) is a popular technique for non-invasive acquisition of time-domain waveforms from active nodes through the backside of an integrated circuit. [1] State-of-the art TRE systems offer high bandwidths (> 5 GHz), excellent spatial resolution (0.25um), and complete visibility of all nodes on the chip. TRE waveforms are typically used for detecting incorrect signal levels, race conditions, and/or timing faults with resolution of a few ps. However, extracting the exact voltage behavior from a TRE waveform is usually difficult because dynamic photon emission is a highly nonlinear process. This has limited the perceived utility of TRE in diagnosing analog circuits. In this paper, we demonstrate extraction of voltage waveforms in passing and failing conditions from a small-swing, differential logic circuit. The voltage waveforms obtained were crucial in corroborating a theory for some failures inside an 0.18um ASIC.


Author(s):  
Z. G. Song ◽  
S. K. Loh ◽  
X. H. Zheng ◽  
S.P. Neo ◽  
C. K. Oh

Abstract This article presents two cases to demonstrate the application of focused ion beam (FIB) circuit edit in analysis of memory failure of silicon on insulator (SOI) devices using XTEM and EDX analyses. The first case was a single bit failure of SRAM units manufactured with 90 nm technology in SOI wafer. The second case was the whole column failure with a single bit pass for a SRAM unit. From the results, it was concluded that FIB circuit edit and electrical characterization is a good methodology for further narrowing down the defective location of memory failure, especially for SOI technology, where contact-level passive voltage contrast is not suitable.


Author(s):  
Thierry Parrassin ◽  
Sylvain Dudit ◽  
Michel Vallet ◽  
Antoine Reverdy ◽  
Hervé Deslandes

Abstract By adding a transmission grating into the optical path of our photon emission system and after calibration, we have completed several failure analysis case studies. In some cases, additional information on the emission sites is provided, as well as understanding of the behavior of transistors that are associated to the fail site. The main application of the setup is used for finding and differentiating easily related emission spots without advance knowledge in light emission mechanisms in integrated circuits.


Sign in / Sign up

Export Citation Format

Share Document