Effective Defect Localization on Nanoscale Short Failures

Author(s):  
Jiang Huang ◽  
Ryan Sweeney ◽  
Laurent Dumas ◽  
Mark Johnston ◽  
Pei-Yi Chen ◽  
...  

Abstract This paper presents two case studies, based on 32nm Silicon-On-Insulator (SOI) and 28nm bulk Si technology, on finding the root cause of nanometer scale short failures using Passive Voltage Contrast (PVC), Active Voltage Contrast (AVC) and Transmission Electron Microscopy (TEM). PVC/AVC is used as precision localization technique that is critical for a successful FA-TEM analysis. Combining planar TEM sample preparation and high sensitivity Energy Dispersive Spectroscopy (EDS) mapping, a small residual filament, which is not visible even at high resolution TEM, is found to short two metal lines. The effective usage of voltage contrast and TEM provides the need of high throughput, high precision, and high resolution in the advanced FA lab that serves leading-edge semiconductor manufacturing.

Author(s):  
S. Shinozaki ◽  
J. W. Sprys

In reaction sintered SiC (∽ 5um average grain size), about 15% of the grains were found to have long-period structures, which were identifiable by transmission electron microscopy (TEM). In order to investigate the stability of the long-period polytypes at high temperature, crystal structures as well as microstructural changes in the long-period polytypes were analyzed as a function of time in isothermal annealing.Each polytype was analyzed by two methods: (1) Electron diffraction, and (2) Electron micrograph analysis. Fig. 1 shows microdensitometer traces of ED patterns (continuous curves) and calculated intensities (vertical lines) along 10.l row for 6H and 84R (Ramsdell notation). Intensity distributions were calculated based on the Zhdanov notation of (33) for 6H and [ (33)3 (32)2 ]3 for 84R. Because of the dynamical effect in electron diffraction, the observed intensities do not exactly coincide with those intensities obtained by structure factor calculations. Fig. 2 shows the high resolution TEM micrographs, where the striped patterns correspond to direct resolution of the structural lattice periodicities of 6H and 84R structures and the spacings shown in the figures are as expected for those structures.


2003 ◽  
Vol 762 ◽  
Author(s):  
Hwang Huh ◽  
Jung H. Shin

AbstractAmorphous silicon (a-Si) films prepared on oxidized silicon wafer were crystallized to a highly textured form using contact printing of rolled and annealed nickel tapes. Crystallization was achieved by first annealing the a-Si film in contact with patterned Ni tape at 600°C for 20 min in a flowing forming gas (90 % N2, 10 % H2) environment, then removing the Ni tape and further annealing the a-Si film in vacuum for2hrsat600°C. An array of crystalline regions with diameters of up to 20 μm could be formed. Electron microscopy indicates that the regions are essentially single-crystalline except for the presence of twins and/or type A-B formations, and that all regions have the same orientation in all 3 directions even when separated by more than hundreds of microns. High resolution TEM analysis shows that formation of such orientation-controlled, nearly single crystalline regions is due to formation of nearly single crystalline NiSi2 under the point of contact, which then acts as the template for silicide-induced lateral crystallization. Furthermore, the orientation relationship between Si grains and Ni tape is observed to be Si (110) || Ni (001)


Author(s):  
M.K. Dawood ◽  
C. Chen ◽  
P.K. Tan ◽  
S. James ◽  
P.S. Limin ◽  
...  

Abstract In this work, we present two case studies on the utilization of advanced nanoprobing on 20nm logic devices at contact layer to identify the root cause of scan logic failures. In both cases, conventional failure analysis followed by inspection of passive voltage contrast (PVC) failed to identify any abnormality in the devices. Technology advancement makes identifying failure mechanisms increasingly more challenging using conventional methods of physical failure analysis (PFA). Almost all PFA cases for 20nm technology node devices and beyond require Transmission Electron Microscopy (TEM) analysis. Before TEM analysis can be performed, fault isolation is required to correctly determine the precise failing location. Isolated transistor probing was performed on the suspected logic NMOS and PMOS transistors to identify the failing transistors for TEM analysis. In this paper, nanoprobing was used to isolate the failing transistor of a logic cell. Nanoprobing revealed anomalies between the drain and bulk junction which was found to be due to contact gouging of different severities.


1999 ◽  
Vol 5 (S2) ◽  
pp. 196-197
Author(s):  
J.C. Barry ◽  
J.A. Alarco

Since the discovery of high temperature superconducting (HTS) ceramics there has been a great deal of discussion about theories of superconductivity. In a recent theory it has been proposed that the Tc's in these new materials are related in some way to a subtle phase separation in the structure. HTS ceramics have been studied quite intensively by high resolution transmission electron microscopy (HRTEM) and by electron diffraction (ED). In such studies the major focus invariably has been on the periodic structure of the object. However, early HRTEM work on Yba2cu3O7-x by Barry found that in addition to the crystalline order, the Yba2cu3O7-x HTS has a non-periodic structural modulation. In this work we have used an image processing method to look for subtle structural changes in Yba2cu3O7-x by measuring the bending of lattice fringes at twin planes. The image processing method is similar to the method used by Hetherington to study rigid body displacements at gold grain boundaries.


2013 ◽  
Vol 19 (S2) ◽  
pp. 1556-1557 ◽  
Author(s):  
B. Zhang ◽  
W. Zhang ◽  
L. Shao ◽  
D.S. Su

Extended abstract of a paper presented at Microscopy and Microanalysis 2013 in Indianapolis, Indiana, USA, August 4 – August 8, 2013.


2011 ◽  
Vol 17 (6) ◽  
pp. 889-895 ◽  
Author(s):  
Lynne M. Gignac ◽  
Surbhi Mittal ◽  
Sarunya Bangsaruntip ◽  
Guy M. Cohen ◽  
Jeffrey W. Sleight

AbstractThe ability to prepare multiple cross-section transmission electron microscope (XTEM) samples from one XTEM sample of specific sub-10 nm features was demonstrated. Sub-10 nm diameter Si nanowire (NW) devices were initially cross-sectioned using a dual-beam focused ion beam system in a direction running parallel to the device channel. From this XTEM sample, both low- and high-resolution transmission electron microscope (TEM) images were obtained from six separate, specific site Si NW devices. The XTEM sample was then re-sectioned in four separate locations in a direction perpendicular to the device channel: 90° from the original XTEM sample direction. Three of the four XTEM samples were successfully sectioned in the gate region of the device. From these three samples, low- and high-resolution TEM images of the Si NW were taken and measurements of the NW diameters were obtained. This technique demonstrated the ability to obtain high-resolution TEM images in directions 90° from one another of multiple, specific sub-10 nm features that were spaced 1.1 μm apart.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1085-1086
Author(s):  
T. Kamino ◽  
T. Yaguchi ◽  
M. Tomita ◽  
Y. Yasutomi ◽  
K. Hidaka

The results of our previous studies revealed that the specimen heating holder with the heating elements of spiral shaped fine metal wires of high melting point enable us to observe high resolution transmission electron microscopy(TEM) images at elevated temperatures.In fact, the holder was applied for high resolution TEM study of a formation of SiC crystal at 1500°C and a surface reconstruction of Au deposited Si particle at 1000°C successfully. However, because the heating holder was single tilt type, there was a certain limitation in its application.In this paper, development of a double tilt specimen heating holder with a heating element of spiral shaped fine metal wire and its application for the study of microstructural changes of Si3N4 during sintering at very high temperature.Photograph of the newly developed double tilt specimen heating holder is shown in Fig. 1. The heating element is mounted on the electrically isolated tilting frame of the holder and the heating current is supplied via tilting rod which is also electrically isolated from other parts of the holder.


2009 ◽  
Vol 24 (1) ◽  
pp. 192-197 ◽  
Author(s):  
G.M. Cheng ◽  
Y.X. Tian ◽  
L.L. He

The orientation relationship (OR) and the interfacial structure between Nb solid solution (Nbss) precipitates and α-Nb5Si3 intermetallics have been investigated by transmission electron microscopy (TEM). The OR between Nbss and α-Nb5Si3 was determined by selected-area electron diffraction analyses as (222)Nb//(002)α and . High-resolution TEM images of the Nbss/α-Nb5Si3 interface were presented. Steps existed at the interface that acted as centers of stress concentration and released the distortion of lattices to decrease the interfacial energy. In addition, the interfacial models were proposed based on the observed OR to describe the atomic matching of the interface. The distribution of alloying elements at the Nbss/α-Nb5Si3 interface has also been investigated, and Hf was enriched at the interface to strengthen the grain boundary.


2012 ◽  
Vol 20 (3) ◽  
pp. 46-49 ◽  
Author(s):  
C. T. Schamp

The transmission electron microscope (TEM) is well known as the technique of choice for visualization and measurement of features at near-atomic length scales, particularly for semiconductor devices. For example, a critical measurement of interest may be the thickness of the gate oxide in a transistor. The accuracy of these measurements is based on calibrated distances at each magnification. The term accuracy conveys the extent to which the measurement minimizes the difference between the measured value and the true value. The associated term precision is the closeness of agreement in a series of measurements locating the end-points of a measurement line. This article describes a method that increases the accuracy of metrology measurements applied to a high-resolution TEM image.


Sign in / Sign up

Export Citation Format

Share Document