Modeling Integrated Lane-Changing Behavior

Author(s):  
Tomer Toledo ◽  
Haris N. Koutsopoulos ◽  
Moshe E. Ben-Akiva

The lane-changing model is an important component within microscopic traffic simulation tools. Following the emergence of these tools in recent years, interest in the development of more reliable lane-changing models has increased. Lane-changing behavior is also important in several other applications such as capacity analysis and safety studies. Lane-changing behavior is usually modeled in two steps: ( a) the decision to consider a lane change, and ( b) the decision to execute the lane change. In most models, lane changes are classified as either mandatory (MLC) or discretionary (DLC). MLC are performed when the driver must leave the current lane. DLC are performed to improve driving conditions. Gap acceptance models are used to model the execution of lane changes. The classification of lane changes as either mandatory or discretionary prohibits capturing trade-offs between these considerations. The result is a rigid behavioral structure that does not permit, for example, overtaking when mandatory considerations are active. Using these models within a microsimulator may result in unrealistic traffic flow characteristics. In addition, little empirical work has been done to rigorously estimate the parameters of lane-changing models. An integrated lane-changing model, which allows drivers to jointly consider mandatory and discretionary considerations, is presented. Parameters of the model are estimated with detailed vehicle trajectory data.

Author(s):  
Tomer Toledo ◽  
Charisma F. Choudhury ◽  
Moshe E. Ben-Akiva

The lane-changing model is an important component of microscopic traffic simulation tools. With the increasing popularity of these tools, a number of lane-changing models have been proposed and implemented in various simulators in recent years. Most of these models are based on the assumption that drivers evaluate the current and adjacent lanes and choose a direction of change (or no change) on the basis of the utilities of these lanes only. The lane choice set is therefore dictated by the current position of the vehicle and in multilane facilities would be restricted to a subset of the available lanes. Thus, existing models lack an explicit tactical choice of a target lane and therefore cannot explain a sequence of lane changes from the current lane to this lane. In this paper, a generalized lane-changing model that explicitly incorporates the choice of target lane is presented. The target lane is the lane that the driver perceives to be the best when a wide range of factors and goals are taken into account. The immediate direction in which a driver changes lanes is determined by the target lane choice. All parameters of the model were jointly estimated with detailed vehicle trajectory data. The model was validated and compared with an existing lane-changing model with the use of a microscopic traffic simulator. The results indicate that the proposed model performs significantly better than the previous model.


Author(s):  
Ishtiak Ahmed ◽  
Alan Karr ◽  
Nagui M. Rouphail ◽  
Gyounghoon Chun ◽  
Shams Tanvir

With the expected increase in the availability of trajectory-level information from connected and autonomous vehicles, issues of lane changing behavior that were difficult to assess with traditional freeway detection systems can now begin to be addressed. This study presents the development and application of a lane change detection algorithm that uses trajectory data from a low-cost GPS-equipped fleet, supplemented with digitized lane markings. The proposed algorithm minimizes the effect of GPS errors by constraining the temporal duration and lateral displacement of a lane change detected using preliminary lane positioning. The algorithm was applied to 637 naturalistic trajectories traversing a long weaving segment and validated through a series of controlled lane change experiments. Analysis of naturalistic trajectory data revealed that ramp-to-freeway trips had the highest number of discretionary lane changes in excess of 1 lane change/vehicle. Overall, excessive lane change rates were highest between the two middle freeway lanes at 0.86 lane changes/vehicle. These results indicate that extreme lane changing behavior may significantly contribute to the peak-hour congestion at the site. The average lateral speed during lane change was 2.7 fps, consistent with the literature, with several freeway–freeway and ramp–ramp trajectories showing speeds up to 7.7 fps. All ramp-to-freeway vehicles executed their first mandatory lane change within 62.5% of the total weaving length, although other weaving lane changes were spread over the entire segment. These findings can be useful for implementing strategies to lessen abrupt and excessive lane changes through better lane pre-positioning.


Author(s):  
Saleh R. Mousa ◽  
Peter R. Bakhit ◽  
Osama A. Osman ◽  
Sherif Ishak

Lane changing is one of the main contributors to car crashes in the U.S. The complexity of the decision-making process associated with lane changing makes such maneuvers prone to driving errors, and hence, increases the possibility of car crashes. Thus, researchers have been investigating ways to model and predict lane changing maneuvers for optimally designed crash avoidance systems. Such systems rely on the accuracy of detecting the onset of lane-change maneuvers, which requires comprehensive vehicle trajectory data. Connected Vehicles (CV) data provide opportunities for accurate modeling of lane changing maneuvers, especially with the variety of advanced tools available nowadays. The review of the literature indicates that most of the implemented modeling tools do not achieve reliable accuracy for such critical safety application of lane-change prediction. Recently, eXtreme Gradient Boosting (XGB) became a well-recognized algorithm among the computer science community in solving classification problems due to its accuracy, scalability, and speed. This study implements the XGB in predicting the onset of lane changing maneuvers using CV trajectory data. The performance of XGB is compared to three other tree-based algorithms namely, decision trees, gradient boosting, and random forests. The Next Generation SIMulation trajectory data are used to represent the high-resolution CV data. The results indicate that XGB is superior to the other algorithms with a high accuracy value of 99.7%. This outstanding accuracy is achieved when considering vehicle trajectory data two seconds prior to a potential lane change maneuver. The findings of this study are promising for detection of lane change maneuvers in CV environments.


2000 ◽  
Vol 1710 (1) ◽  
pp. 104-113 ◽  
Author(s):  
Heng Wei ◽  
Eric Meyer ◽  
Joe Lee ◽  
Chuen Feng

Key findings are discussed regarding characteristics of lane-changing behavior based on observations of an urban street network. An in-depth exploration of observed lane-changing behavior and its modeling were conducted using vehicle trajectory data extracted from video observations using VEVID, a software package developed by the authors, integrated with a video-capture system. As a result, rules for modeling lane-changing behavior are proposed with respect to various types of lane changes. A lane-changing model consists of three components: a decision model, a condition model, and a maneuver model. Drivers’ decisions to change lanes depend on travel maneuver plans, the current lane type (i.e., the relationship between the current lane and the driver’s planned route), and traffic conditions in the current and adjacent lanes. A lane-changing condition model is the description of acceptable conditions for different types of lane changes. A lane-changing maneuver model describes a vehicle’s speed and duration when a certain type of lane change occurs. All of these models are established in a heuristic structure.


2021 ◽  
Vol 13 (16) ◽  
pp. 9278
Author(s):  
Ruoxi Jiang ◽  
Shunying Zhu ◽  
Hongguang Chang ◽  
Jingan Wu ◽  
Naikan Ding ◽  
...  

Currently, several traffic conflict indicators are used as surrogate safety measures. Each indicator has its own advantages, limitations, and suitability. There are only a few studies focusing on fixed object conflicts of highway safety estimation using traffic conflict technique. This study investigated which conflict indicator was more suitable for traffic safety estimation based on conflict-accident Pearson correlation analysis. First, a high-altitude unmanned aerial vehicle was used to collect multiple continuous high-precision videos of the Jinan-Qingdao highway. The vehicle trajectory data outputted from recognition of the videos were used to acquire conflict data following the procedure for each conflict indicator. Then, an improved indicator Ti was proposed based on the advantages and limitations of the conventional indicators. This indicator contained definitions and calculation for three types of traffic conflicts (rear-end, lane change and with fixed object). Then the conflict-accident correlation analysis of TTC (Time to Collision)/PET (Post Encroachment Time)/DRAC (Deceleration Rate to Avoid Crash)/Ti indicators were carried out. The results show that the average value of the correlation coefficient for each indicator with different thresholds are 0.670 for TTC, 0.669 for PET, and 0.710 for DRAC, and 0.771 for Ti, which Ti indicator is obviously higher than the other three conventional indicators. The findings of this study suggest TTC often fails to identify lane change conflicts, PET indicator easily misjudges some rear-end conflict when the speed of the following vehicle is slower than the leading vehicle, and PET is less informative than other indicators. At the same time, these conventional indicators do not consider the vehicle-fixed objects conflicts. The improved Ti can overcome these shortcomings; thus, Ti has the highest correlation. More data are needed to verify and support the study.


Author(s):  
Ruihua Tao ◽  
Heng Wei ◽  
Yinhai Wang ◽  
Virginia P. Sisiopiku

This paper explores driver behavior in a paired car-following mode in response to a speed disturbance from a front vehicle. A current state– control action–expected state (SAS) chain is developed to provide a framework for modeling of the hierarchy of expected actions incurred during the need for speed disturbance absorption. Three car-following scenarios and one lane-changing scenario are identified with defined perceptual informative variables to describe the process of speed disturbance absorption. Those variables include dynamic spacing versus the follower's speed, disturbance-effecting and -ending spacing, headway, acceleration– deceleration, speed recovery period, speed advantage, and lane-changing duration. A significant improvement in car-following modeling introduced in the paper is the integration of car-following and lane-changing behaviors in the SAS chain. Moreover, critical values of perceptual informative variables are statistically developed as a function of the follower's speed by using observed vehicle trajectory data. Furthermore, models that determine the probability of a lane change in response to a speed disturbance and models for acceptable lane-changing decision-making conditions at the adjacent lanes are developed on the basis of the analysis of observed vehicle trajectory data. The work presented in this paper provides an analysis of speed disturbance and speed absorption phenomena and car-following and lane-changing behaviors at the microscopic level. This work establishes the foundation for further research on multiple speed disturbance absorption and its impact on traffic stabilities at the macroscopic analysis level.


2020 ◽  
Vol 10 (9) ◽  
pp. 3289
Author(s):  
Hanwool Woo ◽  
Mizuki Sugimoto ◽  
Hirokazu Madokoro ◽  
Kazuhito Sato ◽  
Yusuke Tamura ◽  
...  

In this paper, we propose a novel method to estimate a goal of surround vehicles to perform a lane change at a merging section. Recently, autonomous driving and advance driver-assistance systems are attracting great attention as a solution to substitute human drivers and to decrease accident rates. For example, a warning system to alert a lane change performed by surrounding vehicles to the front space of the host vehicle can be considered. If it is possible to forecast the intention of the interrupting vehicle in advance, the host driver can easily respond to the lane change with sufficient reaction time. This paper assumes a mandatory situation where two lanes are merged. The proposed method assesses the interaction between the lane-changing vehicle and the host vehicle on the mainstream lane. Then, the lane-change goal is estimated based on the interaction under the assumption that the lane-changing driver decides to minimize the collision risk. The proposed method applies the dynamic potential field method, which changes the distribution according to the relative speed and distance between two subject vehicles, to assess the interaction. The performance of goal estimation is evaluated using real traffic data, and it is demonstrated that the estimation can be successfully performed by the proposed method.


Author(s):  
Erik C. B. Olsen ◽  
Suzanne E. Lee ◽  
Walter W. Wierwille

Understanding drivers’ eye behavior before lane changing is an important aspect of designing usable, safe lane-change collision-avoidance systems (LCAS) that will fit well with drivers’ expectations. This understanding could lead to improvements for LCAS as well as for a variety of other collision avoidance systems. Findings regarding driver eye glance behaviors are presented in a comparison of lane change maneuvers with straight-ahead (baseline) driving events. Specific eye glance patterns before lane change initiation were observed. When preparing to make a lane change to the left as compared with driving straight ahead, drivers doubled the number of glances toward the rearview mirror and were much more likely to look at other locations associated with moving to the left, including the left mirror and blind spot. On the basis of the eye glance patterns observed and previous results, the following recommendations are made: ( a) visual presence detection indicator displays should be used to provide information about vehicles in the rear adjacent lane any time a vehicle is detected, ( b) a presence indicator should be presented in a visual format, and ( c) the left mirror and rearview mirror locations should be considered for providing lane change information to the driver. The process of acquiring and analyzing eye glance movements is well worth the investment in resources. However, prototype systems must be tested before implementation, and the exact location and format of warning systems warrant a separate research and development effort to ensure safety and reliability.


Author(s):  
Ishtiak Ahmed ◽  
Dezhong Xu ◽  
Nagui Rouphail ◽  
Alan Karr

Concerns have been raised about the HCM6 weaving method’s lack of sensitivity to weaving segment length. This study explores the trends in HCM6 as they relate to lane change estimates and their impact on the segment speed and level of service (LOS). The study also compares HCM6 estimates of lane changes against empirical data from an NGSIM weaving site. Thus, the objectives of this study are twofold: ( a) critically investigate the effect of weaving length on lane change and associated speed model estimates in HCM6, and ( b) analyze trends in lane changes against congestion levels using detailed NGSIM trajectory data, comparing against HCM6 estimates. For ( a) it was found that the lack of sensitivity to weave length is because of the absence of this parameter in the nonweaving lane change and speed models. For ( b), a comparison of HCM6 lane change rates with NGSIM, US-101 data confirmed that the HCM6 estimates for weaving vehicles are fully consistent with those at the NGSIM site, controlling for density. In contrast, nonweaving lane change estimates in HCM6 did not deliver the expected trends, with more discretionary lane changes predicted as congestion increased. Finally, analysis of lane change patterns at the NGSIM site revealed a tendency for early merging for freeway to ramp traffic and uniform merging for ramp to freeway traffic over the length of the weave. Interestingly, a speed analysis showed that in most cases, a higher frequency of discretionary lane changes yielded lower travel times for drivers executing them.


Author(s):  
Kequan Chen ◽  
Pan Liu ◽  
Zhibin Li ◽  
Yuxuan Wang ◽  
Yunxue Lu

Modeling lane changing driving behavior has attracted significant attention recently. Most of the existing models are homogeneous and do not recognize the anticipation and relaxation phenomena occurring during the maneuver. To fill this gap, we adopted long short-term memory (LSTM) network and used large quantities of trajectory data extracted from video footage collected by an unmanned automated vehicle in Nanjing, China. Then, we divided complete lane changing behavior into two stages, that is, anticipation and relaxation. Description analysis of lane changing behavior revealed that the factors affecting the two stages are significantly different. In this context, two LSTM models with different input variables were proposed to predict the anticipation and the relaxation during the lane changing activity, respectively. The vehicle trajectory data were further divided into an anticipation dataset and a relaxation dataset to train the two LSTM models. Then we applied numerical tests to compare our models with two baseline models using real trajectory data of lane changing behavior. The results suggest that our models achieved the best performance for trajectory prediction in both lateral and longitudinal positions. Moreover, the simulation results show that the proposed models can precisely replicate the impact of the anticipation phenomenon on the target lane, and the relationship between the speed and spacing of the lane changing vehicle during the relaxation process can be reproduced with reasonable accuracy.


Sign in / Sign up

Export Citation Format

Share Document