scholarly journals Toward the Design of an Induction Heating System for Asphalt Pavements with the Finite Element Method

2017 ◽  
Vol 2633 (1) ◽  
pp. 136-146 ◽  
Author(s):  
Panos Apostolidis ◽  
Xueyan Liu ◽  
Cor Kasbergen ◽  
A.Tom Scarpas ◽  
Martinus van de Ven

Induction technology was introduced to the paving industry to assist pavement operations by heating asphalt layers efficiently from the surface. Many experimental studies have been conducted to investigate the impact of inductive particles on the heating efficiency of asphalt mixes. However, research is limited on the quantification of design, the operational factors, and the associated degree of heat generation of induction treatment. This study assessed the hypothesis that different systems of induction coils provoke different levels of heat generation within an inductive asphalt layer. First, a three-dimensional induction heating finite element model was developed to evaluate the design and effect of operational factors for a static single-turn induction coil system. The electrical conductivity values of the material in the inductive asphalt pavement were calibrated with a laboratory-scale induction device. Moving induction systems were analyzed with different operational conditions considered. The supplied power and the traveling speed of the induction system appeared to be the most influential operational factors for the development of a quick and highly efficient system. The developed model creates an opportunity to apply these analyses to asphalt pavements to optimize the technology in situ.

2021 ◽  
Vol 26 (3-4) ◽  
pp. 255-264
Author(s):  
E.Y. Chugunov ◽  
◽  
A.I. Pogalov ◽  
S.P. Timoshenkov ◽  
◽  
...  

In the context of increasing the electronic components integration level, growing functionality and packaging density, as well as reducing the electronics weight and size, an integrated approach to engineering calculations of parts and assemblies of modern functionally and technically complex microelectronic products is required. Of particular importance are engineering calculations and structural modeling using computer-aided engineering systems, and also assessment of structural, technological and operational factors’ impact on the products reliability and performance. This work presents an approach to engineering calculations and microelectronic products modeling based on the finite-element method providing a comprehensive account of various factors (material properties, external loading, temperature fields, and other parameters) impact on the stress-strain state, mechanical strength, thermal condition, and other characteristics of products. On the example of parts and assemblies of products of microelectronic technology, the approximation of structures was shown and computer finite-element models were developed to study various structural and technological options of products and the effects on them. Engineering calculations and modeling of parts and assemblies were performed, taking into account the impact of material properties, design parameters and external influences on the products’ characteristics. Scientific and technical recommendations for structure optimization and design and technology solutions ensuring the products resistance to diverse effects were developed. It has been shown that an integrated approach to engineering calculations and microelectronic products modeling based on the finite-element method provides for the determination of optimal solutions taking into account structural, technological, and operational factors and allows the development of products with high tactical, technical and operational characteristics.


2015 ◽  
Vol 63 (2) ◽  
pp. 397-403 ◽  
Author(s):  
G. Leonardi

Abstract This paper presents a numerical study of an aircraft wheel impacting on a flexible pavement. The proposed three dimensional model simulates the behaviour of flexible runway pavement during the landing phase. This model was implemented in a finite element code in order to investigate the impact of repeated cycles of loads on pavement permanent deformation. In the model a traditional multi-layer pavement structure was considered. In addition, the asphalt layer (HMA) was assumed to follow an elasto-viscoplastic behaviour. The results demonstrate the capability of the model in predicting the permanent deformation distribution in the asphalt layer


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5963
Author(s):  
Igor Kotenko ◽  
Igor Saenko ◽  
Oleg Lauta ◽  
Mikhail Karpov

This paper examines an approach that allows one to build an efficient system for protecting the information resources of smart power supply networks from cyberattacks based on the use of graph models and artificial neural networks. The possibility of a joint application of graphs, describing the features for the functioning of the protection system of smart power supply networks, and artificial neural in order to predict and detect cyberattacks is considered. The novelty of the obtained results lies in the fact that, on the basis of experimental studies, a methodology for managing the protection system of smart power supply networks in conditions of cyberattacks is substantiated. It is based on the specification of the protection system by using flat graphs and implementing a neural network with long short-term memory, which makes it possible to predict with a high degree of accuracy and fairly quickly the impact of cyberattacks. The issues of software implementation of the proposed approach are considered. The experimental results obtained using the generated dataset confirm the efficiency of the developed methodology. It is shown that the proposed methodology demonstrates up to a 30% gain in time for detecting cyberattacks in comparison with known solutions. As a result, the survivability of the Self-monitoring, Analysis and Reporting technology (SMART) grid (SG) fragment under consideration increased from 0.62 to 0.95.


Author(s):  
P. Vikulin ◽  
K. Khlopov ◽  
M. Cherkashin

Enhancing water purification processes is provided by various methods including physical ones, in particular, exposure to ultrasonic vibrations. The change in the dynamic viscosity of water affects the rate of deposition of particles in the aquatic environment which can be used in natural and wastewater treatment. At the Department Water Supply and Wastewater Disposal of the National Research Moscow State University of Civil Engineering experimental studies were conducted under laboratory conditions to study the effect of ultrasound on the change in the dynamic viscosity of water. A laboratory setup has been designed consisting of an ultrasonic frequency generator of the relative intensity, a transducer (concentrator) that transmits ultrasonic vibrations to the source water, and sonic treatment tanks. Experimental studies on the impact of the ultrasonic field in the cavitation mode on the dynamic viscosity of the aqueous medium were carried out the exposure time was obtained to achieve the maximum effect.Интенсификация процессов очистки воды осуществляется с помощью различных методов, в том числе и физических, в частности воздействием ультразвуковых колебаний. Изменение динамической вязкости воды влияет на скорость осаждения частиц в водной среде, что может быть использовано в процессах очистки природных и сточных вод. На кафедре Водоснабжение и водоотведение Национального исследовательского Московского государственного строительного университета в лабораторных условиях проведены экспериментальные исследования по изучению влияния ультразвука на изменение динамической вязкости воды. Разработана схема лабораторной установки, состоящая из генератора ультразвуковых частот с соответствующей интенсивностью, преобразователя (концентратора), передающего ультразвуковые колебания в исходную воду, и емкости для озвучивания. Выполнены экспериментальные исследования по влиянию ультразвукового поля в режиме кавитации на динамическую вязкость водной среды, получено время экспозиции для достижения максимального эффекта.


Author(s):  
Abigail A. Fagan ◽  
Kristen M. Benedini

This chapter reviews the degree to which empirical evidence demonstrates that families influence youth delinquency. Because they are most likely to be emphasized in life-course theories, this chapter focuses on parenting practices such as parental warmth and involvement, supervision and discipline of children, and child maltreatment. It also summarizes literature examining the role of children's exposure to parental violence, family criminality, and young (teenage) parents in affecting delinquency. Because life-course theories are ideally tested using longitudinal data, which allow examination of, in this case, the impact of parenting practices on children's subsequent behaviors, this chapter focuses on evidence generated from prospective studies conducted in the United States and other countries. It also discusses findings from experimental studies designed to reduce youth substance use and delinquency by improving the family environment.


2015 ◽  
Vol 12 (19) ◽  
pp. 5871-5883 ◽  
Author(s):  
L. A. Melbourne ◽  
J. Griffin ◽  
D. N. Schmidt ◽  
E. J. Rayfield

Abstract. Coralline algae are important habitat formers found on all rocky shores. While the impact of future ocean acidification on the physiological performance of the species has been well studied, little research has focused on potential changes in structural integrity in response to climate change. A previous study using 2-D Finite Element Analysis (FEA) suggested increased vulnerability to fracture (by wave action or boring) in algae grown under high CO2 conditions. To assess how realistically 2-D simplified models represent structural performance, a series of increasingly biologically accurate 3-D FE models that represent different aspects of coralline algal growth were developed. Simplified geometric 3-D models of the genus Lithothamnion were compared to models created from computed tomography (CT) scan data of the same genus. The biologically accurate model and the simplified geometric model representing individual cells had similar average stresses and stress distributions, emphasising the importance of the cell walls in dissipating the stress throughout the structure. In contrast models without the accurate representation of the cell geometry resulted in larger stress and strain results. Our more complex 3-D model reiterated the potential of climate change to diminish the structural integrity of the organism. This suggests that under future environmental conditions the weakening of the coralline algal skeleton along with increased external pressures (wave and bioerosion) may negatively influence the ability for coralline algae to maintain a habitat able to sustain high levels of biodiversity.


Author(s):  
Ah-Young Park ◽  
Satish Chaparala ◽  
Seungbae Park

Through-silicon via (TSV) technology is expected to overcome the limitations of I/O density and helps in enhancing system performance of conventional flip chip packages. One of the challenges for producing reliable TSV packages is the stacking and joining of thin wafers or dies. In the case of the conventional solder interconnections, many reliability issues arise at the interface between solder and copper bump. As an alternative solution, Cu-Cu direct thermo-compression bonding (CuDB) is a possible option to enable three-dimension (3D) package integration. CuDB has several advantages over the solder based micro bump joining, such as reduction in soldering process steps, enabling higher interconnect density, enhanced thermal conductivity and decreased concerns about intermetallic compounds (IMC) formation. Critical issue of CuDB is bonding interface condition. After the bonding process, Cu-Cu direct bonding interface is obtained. However, several researchers have reported small voids at the bonded interface. These defects can act as an initial crack which may lead to eventual fracture of the interface. The fracture could happen due to the thermal expansion coefficient (CTE) mismatch between the substrate and the chip during the postbonding process, board level reflow or thermal cycling with large temperature changes. In this study, a quantitative assessment of the energy release rate has been made at the CuDB interface during temperature change finite element method (FEM). A parametric study is conducted to analyze the impact of the initial crack location and the material properties of surrounding materials. Finally, design recommendations are provided to minimize the probability of interfacial delamination in CuDB.


Author(s):  
Dan Yue ◽  
Zepeng Tong ◽  
Jianchi Tian ◽  
Yang Li ◽  
Linxiu Zhang ◽  
...  

The global illegal wildlife trade directly threatens biodiversity and leads to disease outbreaks and epidemics. In order to avoid the loss of endangered species and ensure public health security, it is necessary to intervene in illegal wildlife trade and promote public awareness of the need for wildlife conservation. Anthropomorphism is a basic and common psychological process in humans that plays a crucial role in determining how a person interacts with other non-human agents. Previous research indicates that anthropomorphizing nature entities through metaphors could increase individual behavioral intention of wildlife conservation. However, relatively little is known about the mechanism by which anthropomorphism influences behavioral intention and whether social context affects the effect of anthropomorphism. This research investigated the impact of negative emotions associated with a pandemic situation on the effectiveness of anthropomorphic strategies for wildlife conservation across two experimental studies. Experiment 1 recruited 245 college students online and asked them to read a combination of texts and pictures as anthropomorphic materials. The results indicated that anthropomorphic materials could increase participants’ empathy and decrease their wildlife product consumption intention. Experiment 2 recruited 140 college students online and they were required to read the same materials as experiment 1 after watching a video related to epidemics. The results showed that the effect of wildlife anthropomorphization vanished if participants’ negative emotion was aroused by the video. The present research provides experimental evidence that anthropomorphic strategies would be useful for boosting public support for wildlife conservation. However, policymakers and conservation organizations must be careful about the negative effects of the pandemic context, as the negative emotions produced by it seems to weaken the effectiveness of anthropomorphic strategies.


Entropy ◽  
2021 ◽  
Vol 23 (4) ◽  
pp. 421
Author(s):  
Dariusz Puchala ◽  
Kamil Stokfiszewski ◽  
Mykhaylo Yatsymirskyy

In this paper, the authors analyze in more details an image encryption scheme, proposed by the authors in their earlier work, which preserves input image statistics and can be used in connection with the JPEG compression standard. The image encryption process takes advantage of fast linear transforms parametrized with private keys and is carried out prior to the compression stage in a way that does not alter those statistical characteristics of the input image that are crucial from the point of view of the subsequent compression. This feature makes the encryption process transparent to the compression stage and enables the JPEG algorithm to maintain its full compression capabilities even though it operates on the encrypted image data. The main advantage of the considered approach is the fact that the JPEG algorithm can be used without any modifications as a part of the encrypt-then-compress image processing framework. The paper includes a detailed mathematical model of the examined scheme allowing for theoretical analysis of the impact of the image encryption step on the effectiveness of the compression process. The combinatorial and statistical analysis of the encryption process is also included and it allows to evaluate its cryptographic strength. In addition, the paper considers several practical use-case scenarios with different characteristics of the compression and encryption stages. The final part of the paper contains the additional results of the experimental studies regarding general effectiveness of the presented scheme. The results show that for a wide range of compression ratios the considered scheme performs comparably to the JPEG algorithm alone, that is, without the encryption stage, in terms of the quality measures of reconstructed images. Moreover, the results of statistical analysis as well as those obtained with generally approved quality measures of image cryptographic systems, prove high strength and efficiency of the scheme’s encryption stage.


Sign in / Sign up

Export Citation Format

Share Document