scholarly journals PECULIARITIES OF REGULATION OF HEART RATE VARIABILITY IN DIFFERENT VARIANTS OF COGNITIVE LOAD IN STUDENTS

Author(s):  
E.A. Archibasova ◽  
◽  
V.Yu. Kulikov ◽  
M.I. Voevoda ◽  
◽  
...  

With different variants of cognitive load, the corresponding regions of the brain are activated, which is manifested by peculiarities of heart rate variability (HRV). Cognitive load (semantic fluency) contributes to a decrease in the activity of the Total Power (TP) integral indicator in the group as a whole. The use of the autonomic balance index (ABI), which is an objective indicator of the autonomic mechanisms of HRV regulation, reveals that this load is most sensitive for young men, who have more vulnerable parasympathetic NS, while girls do not have such a reaction. When performing the semantic fluency test under conditions of cognitive load (reverse counting), an increase in the TP index was noted. When comparing ABI between groups of boys and girls before the exercise, a significantly higher ABI in girls is noted, that is initially the contribution of the parasympathetic NS to the regulation of HRV is of predominant importance. After the exercise, the ABI in girls decreases which indicate the predominant role of the sympathetic NS as a mechanism for regulating the HRV in response to cognitive load — the ability to count. The development of an imbalance between the sympathetic and parasympathetic NS activity under conditions of cognitive load reveals the most vulnerable regulatory circuits, which may become the basis of the corresponding pathological process in the future.

2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Reuben Howden ◽  
Eva Gougian ◽  
Marcus Lawrence ◽  
Samantha Cividanes ◽  
Wesley Gladwell ◽  
...  

Nrf2protects the lung from adverse responses to oxidants, including 100% oxygen (hyperoxia) and airborne pollutants like particulate matter (PM) exposure, but the role ofNrf2on heart rate (HR) and heart rate variability (HRV) responses is not known. We hypothesized that genetic disruption ofNrf2would exacerbate murine HR and HRV responses to severe hyperoxia or moderate PM exposures.Nrf2-/-andNrf2+/+mice were instrumented for continuous ECG recording to calculate HR and HRV (low frequency (LF), high frequency (HF), and total power (TP)). Mice were then either exposed to hyperoxia for up to 72 hrs or aspirated with ultrafine PM (UF-PM). Compared to respective controls, UF-PM induced significantly greater effects on HR (P<0.001) and HF HRV (P<0.001) inNrf2-/-mice compared toNrf2+/+mice.Nrf2-/-mice tolerated hyperoxia significantly less thanNrf2+/+mice (~22 hrs;P<0.001). Reductions in HR, LF, HF, and TP HRV were also significantly greater inNrf2-/-compared toNrf2+/+mice (P<0.01). Results demonstrate thatNrf2deletion increases susceptibility to change in HR and HRV responses to environmental stressors and suggest potential therapeutic strategies to prevent cardiovascular alterations.


Author(s):  
T. V. Cherniy

Concerning all etiological factors for the increasing factors of Chronic Cerebral Ischemia (CCI) fits into the concept of the creation of a stable pathological system in the central nervous system (CNS). Aim. The evaluation of the increasing factors for the formation of a pathological system of the brain, peculiarities of cerebro-cardial interactions with the help of parameters of quantitative electroencephalography and heart rate variability in patients with CNS of different genesis. Materials and methods. At aged from 40 to 68 were comprehensively examined 88 people in dynamics in the period from 2016 to 2019. The registration of brain biopotentials was recorded using Tredex Expert computer-based electroencephalograph. For the analysis of EEG, the amplitude-time representation of an unsteady signal and its result of continuous wavelet transform were used. In the dynamics of therapy, an analysis of quantitative EEG (qEEG), heart rate variability (HRV) (Utas UM 200) was proceed. Results and discussion. Using the method of quantitative EEG with a wavelet conversion of a stationary EEG signal [9], the formation and destruction of stable pathological systems of the brain in patients with stroke, transient cerebral ischemia (TCI), MCI grade 2 were studied. In patients with MCI grade 2, in contrast to the “healthy brain”, the role of the “central contour” of regulation of heart rate variability shifts from the vegetative centers of the medulla oblongata to the region of diencephalic formations; in the thalamus area; into the hypothalamic zone. In patients with stroke, the role of the "central contour" is shifted to the region of limbic-hippocampal formations, the diencephalic zone, the area of the thalamus and ascending thalamocortical pathways. In patients with TCI, the role of the “central contour” shifts to the cortical region (signs of cortical irritation), diencephalic zone, thalamus and descending corticothalamic pathways. Conclusions. The positive effect of therapy when acting on the formed pathological system should be considered the appearance of an EEG on the wavelet graph in parallel with the dominant frequency of the subdominant frequency in the alpha range, the movement of the “central contour” of regulation of heart rate variability in the region of the vegetative centers of the medulla oblongata.


2020 ◽  
Vol 25 (2) ◽  
pp. 83-98
Author(s):  
Stacey L. Parker ◽  
Sabine Sonnentag ◽  
Nerina L. Jimmieson ◽  
Cameron J. Newton

1996 ◽  
Vol 27 (2) ◽  
pp. 398-399
Author(s):  
Tohru Kaji ◽  
Tetsuro Kohya ◽  
Fumishi Tomita ◽  
Tomohide Ono ◽  
Akira Kitabatake

2003 ◽  
Vol 104 (3) ◽  
pp. 295-302 ◽  
Author(s):  
Mario VAZ ◽  
A.V. BHARATHI ◽  
S. SUCHARITA ◽  
D. NAZARETH

Alterations in autonomic nerve activity in subjects in a chronically undernourished state have been proposed, but have been inadequately documented. The present study evaluated heart rate and systolic blood pressure variability in the frequency domain in two underweight groups, one of which was undernourished and recruited from the lower socio-economic strata [underweight, undernourished (UW/UN); n = 15], while the other was from a high class of socio-economic background [underweight, well nourished (UW/WN); n = 17], as well as in normal-weight controls [normal weight, well nourished (NW/WN); n = 27]. Baroreflex sensitivity, which is a determinant of heart rate variability, was also assessed. The data indicate that total power (0–0.4Hz), low-frequency power (0.04–0.15Hz) and high-frequency power (0.15–0.4Hz) of RR interval variability were significantly lower in the UW/UN subjects (P<0.05) than in the NW/WN controls when expressed in absolute units, but not when the low- and high-frequency components were normalized for total power. Baroreflex sensitivity was similarly lower in the UW/UN group (P<0.05). Heart rate variability parameters in the UW/WN group were generally between those of the UW/UN and NW/WN groups, but were not statistically different from either. The mechanisms that contribute to the observed differences between undernourished and normal-weight groups, and the implications of these differences, remain to be elucidated.


2005 ◽  
Vol 289 (4) ◽  
pp. H1729-H1735 ◽  
Author(s):  
Sophie Motte ◽  
Myrielle Mathieu ◽  
Serge Brimioulle ◽  
Anne Pensis ◽  
Lynn Ray ◽  
...  

Heart failure is associated with autonomic imbalance, and this can be evaluated by a spectral analysis of heart rate variability. However, the time course of low-frequency (LF) and high-frequency (HF) heart rate variability changes, and their functional correlates during progression of the disease are not exactly known. Progressive heart failure was induced in 16 beagle dogs over a 7-wk period by rapid ventricular pacing. Spectral analysis of heart rate variability and respiration, echocardiography, hemodynamic measurements, plasma atrial natriuretic factor, and norepinephrine was obtained at baseline and every week, 30 min after pacing interruption. Progressive heart failure increased heart rate (from 91 ± 4 to 136 ± 5 beats/min; P < 0.001) and decreased absolute and normalized (percentage of total power) HF variability from week 1 and 2, respectively ( P < 0.01). Absolute LF variability did not change during the study until it disappeared in two dogs at week 7 ( P < 0.05). Normalized LF variability increased in moderate heart failure ( P < 0.01), leading to an increased LF-to-HF ratio ( P < 0.05), but decreased in severe heart failure ( P < 0.044; week 7 vs. week 5). Stepwise regression analysis revealed that among heart rate variables, absolute HF variability was closely associated with wedge pressure, right atrial and pulmonary arterial pressure, left ventricular ejection fraction and volume, ratio of maximal velocity of early (E) and atrial (A) mitral flow waves, left atrial diameter, plasma norepinephrine, and atrial natriuretic peptide (0.45 < r < 0.65, all P < 0.001). In tachycardia-induced heart failure, absolute HF heart rate variability is a more reliable indicator of cardiac dysfunction and neurohumoral activation than LF heart rate variability.


Circulation ◽  
2012 ◽  
Vol 125 (suppl_10) ◽  
Author(s):  
Amanda C Costa ◽  
Ana Gabriela C Silva ◽  
Cibele T Ribeiro ◽  
Guilherme A Fregonezi ◽  
Fernando A Dias

Background: Stress is one of the risk factors for cardiovascular disease and decreased heart rate variability is associated to increased mortality in some cardiac diseases. The aim of the study was to assess the impact of perceived stress on cardiac autonomic regulation in young healthy volunteers. Methods: 35 young healthy volunteers (19 to 29 years old, 6 men) from a Brazilian population were assessed for perceived stress by the translated and validated Perceived Stress Scale (PSS, 14 questions) and had the R-R intervals recorded at rest on supine position (POLAR RS800CX) and analyzed (5 minutes, Kubius HRV software) by Fast-Fourier Transform for quantification of Heart Rate Variability (HRV). Results: Average data (±SD) for age, heart rate, BMI, waist circumference and percentage of body fat (%BF) were: 21.3±2.7 years; 65.5±7.9 bpm; 22.3±1.9 Kg/m 2 ; 76.0±6.1 cm and 32.1±6.6%; respectively. The mean score for the PSS-14 was 23.5±7.2 and for the HRV parameter as follow: SSDN=54.8±21.2ms; rMSSD=55.9±32.2ms; low-frequency (LF)= 794.8±579.7ms 2 ; High-frequency (HF)= 1508.0±1783.0 ms 2 ; LF(n.u.)= 41.1±16.2; HF(n.u.)= 58.9±16.2; LF/HF=0.89±0.80 and Total power (TP)= 3151±2570ms 2 . Spearman nonparametric correlation was calculated and there was a significant correlation of PSS-14 scores and LF (ms 2 ) (r=−0.343; p= 0.044). Other HRV variables did not shown significant correlation but also had negative values for Spearman r (TP r=−0.265, p=0.124; HF r=−0.158; SSDN r=−0.207; rMSSD r=−0.243, p=0.160). LF/HF and LF(n.u.) did not correlate to PSS-14 having Spearman r very close to zero (LF/HF r=−0.007, p=0.969; LF(n.u.) r=−0.005, p=0.976). No correlation was found for HRV parameters and BMI and there was a trend for statistical correlation of %BF and LF (ms 2 ) (r=−0.309, p=0.071). Conclusions: These data demonstrate a possible association of perceived stress level and HRV at rest. Changes in LF can be a consequence of both sympathetic and parasympathetic activity, however, analyzing the other variables HF, TP, SSDN and rMSSD (all negative Spearman r) and due to the lack of changes in LF/HF ratio and LF(n.u.) we interpret that increased stress may be associated to decrease in overall heart rate variability. These changes were seen in healthy individuals and may point out an important mechanism in cardiovascular disease development.


2019 ◽  
Vol 247 ◽  
pp. 73-80 ◽  
Author(s):  
Adrienne O'Neil ◽  
C. Barr Taylor ◽  
David L. Hare ◽  
Emma Thomas ◽  
Samia R. Toukhsati ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Meenakshi Chaswal ◽  
Raj Kapoor ◽  
Achla Batra ◽  
Savita Verma ◽  
Bhupendra S. Yadav

Alterations in the autonomic cardiovascular control have been implicated to play an important etiologic role in preeclampsia. The present study was designed to evaluate autonomic functions in preeclamptic pregnant women and compare the values with normotensive pregnant and healthy nonpregnant controls. Assessment of autonomic functions was done by cardiovascular reflex tests and by analysis of heart rate variability (HRV). Cardiovascular reflex tests included deep breathing test (DBT) and lying to standing test (LST). HRV was analyzed in both time and frequency domain for quantifying the tone of autonomic nervous system to the heart. The time domain measures included standard deviation of normal R-R intervals (SDNN) and square root of mean squared differences of successive R-R intervals (RMSSD). In the frequency domain we measured total power (TP), high frequency (HF) power, low frequency (LF) power, and LF/HF ratio. Cardiovascular reflex tests showed a significant parasympathetic deficit in preeclamptic women. Among parameters of HRV, preeclamptic group had lower values of SDNN, RMSSD, TP, HF, and LF (ms2) and higher value of LF in normalised units along with high LF/HF ratio compared to normotensive pregnant and nonpregnant controls. Furthermore, normotensive pregnant women had lower values of SDNN, TP, and LF component in both absolute power and normalised units compared to nonpregnant females. The results confirm that normal pregnancy is associated with autonomic disturbances which get exaggerated in the state of preeclampsia.


Sign in / Sign up

Export Citation Format

Share Document