scholarly journals Development of antimicrobial therapy methods to overcome the antibiotic resistance of Acinetobacter baumannii

Acta Naturae ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 34-45
Author(s):  
Olga V. Kisil ◽  
Tatiana A. Efimenko ◽  
Nina I. Gabrielyan ◽  
Olga V. Efremenkova

The spread of antibiotic resistance among pathogens represents a threat to human health around the world. In 2017, the World Health Organization published a list of 12 top-priority antibiotic-resistant pathogenic bacteria for which new effective antibiotics or new ways of treating the infections caused by them are needed. This review focuses on Acinetobacter baumannii, one of these top-priority pathogens. The pathogenic bacterium A. baumannii is one of the most frequently encountered infectious agents in the world; its clinically significant features include resistance to UV light, drying, disinfectants, and antibiotics. This review looks at the various attempts that have been made to tackle the problem of drug resistance relating to A. baumannii variants without the use of antibiotics. The potential of bacteriophages and antimicrobial peptides in the treatment of infections caused by A. baumannii in both planktonic and biofilm form is assessed. Such topics as research into the development of vaccines based on the outer membrane proteins of A. baumannii and the use of silver nanoparticles, as well as photodynamic and chelate therapy, are also covered.

2021 ◽  
Vol 2 (4) ◽  
pp. 01-02
Author(s):  
Daniel Amsterdam

In 2009, the World health organization (WHO) referred to the problem of antibiotics and antibiotic resistance stating, “Antibiotic Resistance – one of the three greatest threats to human health.” In 2019 (i.e., just as the COVID-19 pandemic was evolving), more than 2.8 million antibiotic-resistant infections were identified in the United States, resulting in more than 35,000 deaths (CDC 2019). The initial laboratory assay which demonstrated the activity of an antibacterial compound was performed by Alexander Fleming. He showed that an extract from the mold, Penicillium rubens, could inhibit the growth of several species of Gram-positive bacteria – but not Gram-negative bacteria that were cross-streaked on agar against the diffused Penicillium compound.


2021 ◽  
Author(s):  
Mahshid Nasehi ◽  
Babak Eshrati ◽  
Hamidreza Baradaran ◽  
Leila Janani ◽  
Sasan Ghorbani-Kalkhajeh ◽  
...  

Abstract Background: The World Health Organization repeatedly emphasizes the spread and association of nosocomial infections with microbial resistance. In a 2014 report, the World Health Organization cited microbial resistance as a global threat. In recent years, the world has seen the rapid growth of antibiotic-resistant E. coli in most areas, which poses a serious threat to public health. A high percentage of bacteria that cause nosocomial infections have been resistant to treatment. The most common bacterial agent among these nosocomial infections is E. coli. This bacterium is one of the main causes of nosocomial infections among hospitalized patients. One of the most important goals of the Global Antimicrobial Resistance and Use Surveillance System (GLASS) is timely identification and transmission of Emerging Antimicrobial Resistance (EAR) or outbreak of antibiotic resistance. One of the main ways to identify this "emerging" at the national or local level is to identify deviations from the expected resistance in drug compounds. As a result, if the observed cases of a drug-resistant pathogen are significantly higher than expected, it could indicate "emerging".Purpose: This study aimed to identify and transmit EAR or outbreak of antibiotic resistance among antibiotics used in the treatment of nosocomial infections caused by E. coli. This was done by comparing the observed cases of resistant E. coli with the predicted cases of resistant E. coli, which were predicted by the compartment model.Methods: This is a hospital-based study that used data from the nosocomial infection survelliance system to investigate observed cases of antibiotic resistance. In this study, the results of 12,954 antibiogram tests related to 57 hospitals located in 31 provinces of Iran were divided into two parts (results related to the first half of 2017 and results related to the second half of 2017). The model was developed in the second half of the year to predict expected cases. Before developeing model to predict the expected cases of resistant E. coli, the validity of the model was evaluated by implementing the model in the first half of the year. Finally, the predicted cases of resistant E. coli were compared with those observed in 2017. If the difference between the two was statistically significant, it indicated the outbreak of E.coli. This model evaluated 11 antibiotics recommended by the World Health Organization that are used to treat nosocomial infections caused by E. coli.Results: The results of this study showed that the outbreak of E. coli resistant to ampicillin and ceftazidime occurred in 2017 in hospitals of Iran. This means that resistance to ampicillin and ceftazidime antibiotics in nosocomial infections caused by E. coli is higher than expected and has become "emerging".Conclusion: This study showed how the outbreak of antibiotic resistance in the country's hospitals can be investigated. Using the method of this study, we can investigate the outbreak of antibiotic-resistant E. coli in the coming years and in different substrates. The results of this study showed that the administration and use of antibiotics should be reconsidered.


2021 ◽  
Author(s):  
Mahshid Nasehi ◽  
Babak Eshrati ◽  
Hamid Reza Baradaran ◽  
Leila Janani ◽  
Sasan Ghorbani Kalkhajeh ◽  
...  

Abstract Background: The World Health Organization repeatedly emphasizes the spread and association of nosocomial infections with microbial resistance. In a 2014 report, the World Health Organization cited microbial resistance as a global threat. In recent years, the world has seen the rapid growth of antibiotic-resistant E. coli in most areas, which poses a serious threat to public health. A high percentage of bacteria that cause nosocomial infections have been resistant to treatment. The most common bacterial agent among these nosocomial infections is E. coli. This bacterium is one of the main causes of nosocomial infections among hospitalized patients. One of the most important goals of the Global Antimicrobial Resistance and Use Surveillance System (GLASS) is timely identification and transmission of Emerging Antimicrobial Resistance (EAR) or outbreak of antibiotic resistance. One of the main ways to identify this "emerging" at the national or local level is to identify deviations from the expected resistance in drug compounds. As a result, if the observed cases of a drug-resistant pathogen are significantly higher than expected, it could indicate "emerging".Purpose: This study aimed to identify and transmit EAR or outbreak of antibiotic resistance among antibiotics used in the treatment of nosocomial infections caused by E. coli. This was done by comparing the observed cases of resistant E. coli with the predicted cases of resistant E. coli, which were predicted by the compartment model.Methods: This is a hospital-based study that used data from the nosocomial infection survelliance system to investigate observed cases of antibiotic resistance. In this study, the results of 12,954 antibiogram tests related to 57 hospitals located in 31 provinces of Iran were divided into two parts (results related to the first half of 2017 and results related to the second half of 2017). The model was developed in the second half of the year to predict expected cases. Before developeing model to predict the expected cases of resistant E. coli, the validity of the model was evaluated by implementing the model in the first half of the year. Finally, the predicted cases of resistant E. coli were compared with those observed in 2017. If the difference between the two was statistically significant, it indicated the outbreak of E.coli. This model evaluated 11 antibiotics recommended by the World Health Organization that are used to treat nosocomial infections caused by E. coli.Results: The results of this study showed that the outbreak of E. coli resistant to ampicillin and ceftazidime occurred in 2017 in hospitals of Iran. This means that resistance to ampicillin and ceftazidime antibiotics in nosocomial infections caused by E. coli is higher than expected and has become "emerging".Conclusion: This study showed how the outbreak of antibiotic resistance in the country's hospitals can be investigated. Using the method of this study, we can investigate the outbreak of antibiotic-resistant E. coli in the coming years and in different substrates. The results of this study showed that the administration and use of antibiotics should be reconsidered.


2021 ◽  
Vol 80 (3) ◽  
Author(s):  
Maria Belen Sathicq ◽  
Tomasa Sbaffi ◽  
Giulia Borgomaneiro ◽  
Andrea Di Cesare ◽  
Raffaella Sabatino

The World Health Organization considers antibiotic resistance as one of the main threats to human and other animals' health. Despite the measures used to limit the spread of antibiotic resistance, the efforts made are not enough to tackle this problem. Thus, it has become important to understand how bacteria acquire and transmit antibiotic resistant genes (ARGs), in particular in the environment, given the close connection between the latter and human and animal health, as defined by the One-Health concept. Aquatic ecosystems are often strongly impacted by anthropogenic activities, making them a source for ARGs and antibiotic resistant bacteria (ARB). Although freshwater meiofauna have been the object of active research, few studies have focused on the relationship between the spread of antibiotic resistance and these organisms. In this review, we investigated freshwater meiofauna as carriers of resistances since they play a central role in the aquatic environments and can harbor human and animal potential pathogens. We assessed if these animals could contribute to the spread of ARGs and of potentially pathogenic bacteria. Only four taxa (Rotifera, Chironomidae, Cladocera, Copepoda) were found to be the subject of studies focused on antibiotic resistance. The studies we analyzed, although with some limitations, demonstrated that ARGs and ARB can be found in these animals, and several of them showed the presence of potentially pathogenic bacteria for humans and animals within their microbiome. Thus, meiofauna can be considered a source and a reservoir, even if neglected, of ARGs and ARB for the freshwater environments. However, further studies are needed to evaluate the impact of the meiofauna on the spread and persistence of antibiotic resistance in these ecosystems.


2021 ◽  
Vol 9 (12) ◽  
pp. 2624
Author(s):  
Andrey Shelenkov

In recent years, the acquisition of antimicrobial resistance (AMR) by both pathogenic and opportunistic bacteria has become a major problem worldwide, which was already noticed as a global healthcare threat by the World Health Organization [...]


2021 ◽  
Vol 11 (8) ◽  
Author(s):  
Molla Rahman Shaibur ◽  
Mohammed Sadid Hossain ◽  
Shirina Khatun ◽  
F. K. Sayema Tanzia

AbstractThis study aimed to determine the quality of drinking water supplied in different types of food stalls in Jashore Municipality, Bangladesh. A total of 35 water samples were collected from different tea stalls, street side fast food stalls, normal restaurants and well-furnished restaurants. The water quality was evaluated by determining the distinct physical, chemical and biological parameters. The results revealed that the water used in the food stalls and restaurants for drinking purpose was in desired quality in terms of turbidity, electrical conductivity, pH, total dissolved solids, nitrate (NO3−), sulfate (SO42−), phosphate (PO43−), chloride (Cl−), sodium (Na) and potassium (K) concentrations. The values were within the permissible limit proposed by the Bangladesh Bureau of Statistics and the World Health Organization. Concentrations of calcium (Ca) and magnesium (Mg) found in several samples were higher than the World Health Organization standard. Iron (Fe) concentrations were higher than the permissible limit of the World Health Organization. Only 46% exceeded the permissible limit of Bangladesh Bureau Statistics. The threatening result was that the samples were contaminated by fecal coliform, indicating that the people of Jashore Municipality may have a greater chance of being affected by pathogenic bacteria. The drinking water provided in the street side fast food stalls was biologically contaminated. The findings demonstrate that the drinking water used in food stalls and restaurants of Jashore Municipality did not meet up the potable drinking water quality standards and therefore was detrimental to public health.


2018 ◽  
Vol 46 (S1) ◽  
pp. 25-31 ◽  
Author(s):  
Enrico Baraldi ◽  
Olof Lindahl ◽  
Miloje Savic ◽  
David Findlay ◽  
Christine Årdal

The World Health Organization (WHO) has published a global priority list of antibiotic-resistant bacteria to guide research and development (R&D) of new antibiotics. Every pathogen on this list requires R&D activity, but some are more attractive for private sector investments, as evidenced by the current antibacterial pipeline. A “pipeline coordinator” is a governmental/non-profit organization that closely tracks the antibacterial pipeline and actively supports R&D across all priority pathogens employing new financing tools.


Author(s):  
Pavitra Solanki ◽  
Yasmin Sultana ◽  
Satyavir Singh

Everybody is at risk of being infected by drug-resistant microscopic organisms. Managing with sickness has never been less demanding within the history of our species. At the current rate of antimicrobial resistance (AMR) in microbes, specialists foresee that battling infections tuberculosis, HIV, and intestinal sickness will become more complicated. Antimicrobial resistance is rendering numerous life-saving drugs useless. Antibiotic-resistant microbes, known as “superbugs,” are getting to be more various and more harmful, thanks to the proceeding abuse of anti-microbials. Natural medication offers an alternative to these progressively ineffectual drugs. According to the World Health Organization (WHO), traditional medicine is a holistic term enclosing diverse health practices. Concurring to a report by the College of Maryland Therapeutic Center, turmeric's volatile oil serves as a common anti-microbial.


2020 ◽  
Vol 11 ◽  
Author(s):  
Ellen M. E. Sykes ◽  
Soumya Deo ◽  
Ayush Kumar

Acinetobacter baumannii is classified as a top priority pathogen by the World Health Organization (WHO) because of its widespread resistance to all classes of antibiotics. This makes the need for understanding the mechanisms of resistance and virulence critical. Therefore, tools that allow genetic manipulations are vital to unravel the mechanisms of multidrug resistance (MDR) and virulence in A. baumannii. A host of current strategies are available for genetic manipulations of A. baumannii laboratory-strains, including ATCC® 17978TM and ATCC® 19606T, but depending on susceptibility profiles, these strategies may not be sufficient when targeting strains newly obtained from clinic, primarily due to the latter’s high resistance to antibiotics that are commonly used for selection during genetic manipulations. This review highlights the most recent methods for genetic manipulation of A. baumannii including CRISPR based approaches, transposon mutagenesis, homologous recombination strategies, reporter systems and complementation techniques with the spotlight on those that can be applied to MDR clinical isolates.


2019 ◽  
Vol 87 (12) ◽  
Author(s):  
Laura E. Hesse ◽  
Zachery R. Lonergan ◽  
William N. Beavers ◽  
Eric P. Skaar

ABSTRACT Acinetobacter baumannii is an opportunistic bacterial pathogen capable of causing a variety of infections, including pneumonia, sepsis, wound, and burn infections. A. baumannii is an increasing threat to public health due to the prevalence of multidrug-resistant strains, leading the World Health Organization to declare A. baumannii a “Priority 1: Critical” pathogen, for which the development of novel antimicrobials is desperately needed. Zinc (Zn) is an essential nutrient that pathogenic bacteria, including A. baumannii, must acquire from their hosts in order to survive. Consequently, vertebrate hosts have defense mechanisms to sequester Zn from invading bacteria through a process known as nutritional immunity. Here, we describe a Zn uptake (Znu) system that enables A. baumannii to overcome this host-imposed Zn limitation. The Znu system consists of an inner membrane ABC transporter and an outer membrane TonB-dependent receptor. Strains of A. baumannii lacking any individual Znu component are unable to grow in Zn-starved conditions, including in the presence of the host nutritional immunity protein calprotectin. The Znu system contributes to Zn-limited growth by aiding directly in the uptake of Zn into A. baumannii cells and is important for pathogenesis in murine models of A. baumannii infection. These results demonstrate that the Znu system allows A. baumannii to subvert host nutritional immunity and acquire Zn during infection.


Sign in / Sign up

Export Citation Format

Share Document